/- Copyright (c) 2018 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Mario Carneiro, Simon Hudon -/ import data.fin.fin2 import data.typevec import logic.function.basic import tactic.basic /-! Functors between the category of tuples of types, and the category Type Features: `mvfunctor n` : the type class of multivariate functors `f <$$> x` : notation for map -/ universes u v w open_locale mvfunctor /-- multivariate functors, i.e. functor between the category of type vectors and the category of Type -/ class mvfunctor {n : ℕ} (F : typevec n → Type*) := (map : Π {α β : typevec n}, (α ⟹ β) → (F α → F β)) localized "infixr ` <$$> `:100 := mvfunctor.map" in mvfunctor variables {n : ℕ} namespace mvfunctor variables {α β γ : typevec.{u} n} {F : typevec.{u} n → Type v} [mvfunctor F] /-- predicate lifting over multivariate functors -/ def liftp {α : typevec n} (p : Π i, α i → Prop) (x : F α) : Prop := ∃ u : F (λ i, subtype (p i)), (λ i, @subtype.val _ (p i)) <$$> u = x /-- relational lifting over multivariate functors -/ def liftr {α : typevec n} (r : Π {i}, α i → α i → Prop) (x y : F α) : Prop := ∃ u : F (λ i, {p : α i × α i // r p.fst p.snd}), (λ i (t : {p : α i × α i // r p.fst p.snd}), t.val.fst) <$$> u = x ∧ (λ i (t : {p : α i × α i // r p.fst p.snd}), t.val.snd) <$$> u = y /-- given `x : F α` and a projection `i` of type vector `α`, `supp x i` is the set of `α.i` contained in `x` -/ def supp {α : typevec n} (x : F α) (i : fin2 n) : set (α i) := { y : α i | ∀ ⦃p⦄, liftp p x → p i y } theorem of_mem_supp {α : typevec n} {x : F α} {p : Π ⦃i⦄, α i → Prop} (h : liftp p x) (i : fin2 n): ∀ y ∈ supp x i, p y := λ y hy, hy h end mvfunctor /-- laws for `mvfunctor` -/ class is_lawful_mvfunctor {n : ℕ} (F : typevec n → Type*) [mvfunctor F] : Prop := (id_map : ∀ {α : typevec n} (x : F α), typevec.id <$$> x = x) (comp_map : ∀ {α β γ : typevec n} (g : α ⟹ β) (h : β ⟹ γ) (x : F α), (h ⊚ g) <$$> x = h <$$> g <$$> x) open nat typevec namespace mvfunctor export is_lawful_mvfunctor (comp_map) open is_lawful_mvfunctor variables {α β γ : typevec.{u} n} variables {F : typevec.{u} n → Type v} [mvfunctor F] variables (p : α ⟹ repeat n Prop) (r : α ⊗ α ⟹ repeat n Prop) /-- adapt `mvfunctor.liftp` to accept predicates as arrows -/ def liftp' : F α → Prop := mvfunctor.liftp $ λ i x, of_repeat $ p i x /-- adapt `mvfunctor.liftp` to accept relations as arrows -/ def liftr' : F α → F α → Prop := mvfunctor.liftr $ λ i x y, of_repeat $ r i $ typevec.prod.mk _ x y variables [is_lawful_mvfunctor F] @[simp] lemma id_map (x : F α) : typevec.id <$$> x = x := id_map x @[simp] lemma id_map' (x : F α) : (λ i a, a) <$$> x = x := id_map x lemma map_map (g : α ⟹ β) (h : β ⟹ γ) (x : F α) : h <$$> g <$$> x = (h ⊚ g) <$$> x := eq.symm $ comp_map _ _ _ section liftp' variables (F) lemma exists_iff_exists_of_mono {p : F α → Prop} {q : F β → Prop} (f : α ⟹ β) (g : β ⟹ α) (h₀ : f ⊚ g = id) (h₁ : ∀ u : F α, p u ↔ q (f <$$> u)) : (∃ u : F α, p u) ↔ (∃ u : F β, q u) := begin split; rintro ⟨u,h₂⟩; [ use f <$$> u, use g <$$> u ], { apply (h₁ u).mp h₂ }, { apply (h₁ _).mpr _, simp only [mvfunctor.map_map,h₀,is_lawful_mvfunctor.id_map,h₂] }, end variables {F} lemma liftp_def (x : F α) : liftp' p x ↔ ∃ u : F (subtype_ p), subtype_val p <$$> u = x := exists_iff_exists_of_mono F _ _ (to_subtype_of_subtype p) (by simp [mvfunctor.map_map]) lemma liftr_def (x y : F α) : liftr' r x y ↔ ∃ u : F (subtype_ r), (typevec.prod.fst ⊚ subtype_val r) <$$> u = x ∧ (typevec.prod.snd ⊚ subtype_val r) <$$> u = y := exists_iff_exists_of_mono _ _ _ (to_subtype'_of_subtype' r) (by simp only [map_map, comp_assoc, subtype_val_to_subtype']; simp [comp]) end liftp' end mvfunctor open nat namespace mvfunctor open typevec section liftp_last_pred_iff variables {F : typevec.{u} (n+1) → Type*} [mvfunctor F] [is_lawful_mvfunctor F] {α : typevec.{u} n} variables (p : α ⟹ repeat n Prop) (r : α ⊗ α ⟹ repeat n Prop) open mvfunctor variables {β : Type u} variables (pp : β → Prop) private def f : Π (n α), (λ (i : fin2 (n + 1)), {p_1 // of_repeat (pred_last' α pp i p_1)}) ⟹ λ (i : fin2 (n + 1)), {p_1 : (α ::: β) i // pred_last α pp p_1} | _ α (fin2.fs i) x := ⟨ x.val, cast (by simp only [pred_last]; erw const_iff_true) x.property ⟩ | _ α fin2.fz x := ⟨ x.val, x.property ⟩ private def g : Π (n α), (λ (i : fin2 (n + 1)), {p_1 : (α ::: β) i // pred_last α pp p_1}) ⟹ (λ (i : fin2 (n + 1)), {p_1 // of_repeat (pred_last' α pp i p_1)}) | _ α (fin2.fs i) x := ⟨ x.val, cast (by simp only [pred_last]; erw const_iff_true) x.property ⟩ | _ α fin2.fz x := ⟨ x.val, x.property ⟩ lemma liftp_last_pred_iff {β} (p : β → Prop) (x : F (α ::: β)) : liftp' (pred_last' _ p) x ↔ liftp (pred_last _ p) x := begin dsimp only [liftp,liftp'], apply exists_iff_exists_of_mono F (f _ n α) (g _ n α), { clear x _inst_2 _inst_1 F, ext i ⟨x,_⟩, cases i; refl }, { intros, rw [mvfunctor.map_map,(⊚)], congr'; ext i ⟨x,_⟩; cases i; refl } end open function variables (rr : β → β → Prop) private def f : Π (n α), (λ (i : fin2 (n + 1)), {p_1 : _ × _ // of_repeat (rel_last' α rr i (typevec.prod.mk _ p_1.fst p_1.snd))}) ⟹ λ (i : fin2 (n + 1)), {p_1 : (α ::: β) i × _ // rel_last α rr (p_1.fst) (p_1.snd)} | _ α (fin2.fs i) x := ⟨ x.val, cast (by simp only [rel_last]; erw repeat_eq_iff_eq) x.property ⟩ | _ α fin2.fz x := ⟨ x.val, x.property ⟩ private def g : Π (n α), (λ (i : fin2 (n + 1)), {p_1 : (α ::: β) i × _ // rel_last α rr (p_1.fst) (p_1.snd)}) ⟹ (λ (i : fin2 (n + 1)), {p_1 : _ × _ // of_repeat (rel_last' α rr i (typevec.prod.mk _ p_1.1 p_1.2))}) | _ α (fin2.fs i) x := ⟨ x.val, cast (by simp only [rel_last]; erw repeat_eq_iff_eq) x.property ⟩ | _ α fin2.fz x := ⟨ x.val, x.property ⟩ lemma liftr_last_rel_iff (x y : F (α ::: β)) : liftr' (rel_last' _ rr) x y ↔ liftr (rel_last _ rr) x y := begin dsimp only [liftr,liftr'], apply exists_iff_exists_of_mono F (f rr _ _) (g rr _ _), { clear x y _inst_2 _inst_1 F, ext i ⟨x,_⟩ : 2, cases i; refl, }, { intros, rw [mvfunctor.map_map,mvfunctor.map_map,(⊚),(⊚)], congr'; ext i ⟨x,_⟩; cases i; refl } end end liftp_last_pred_iff end mvfunctor