/- Copyright (c) 2020 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon -/ import control.monad.basic import control.monad.cont import control.monad.writer import logic.equiv.basic import tactic.interactive /-! # Universe lifting for type families Some functors such as `option` and `list` are universe polymorphic. Unlike type polymorphism where `option α` is a function application and reasoning and generalizations that apply to functions can be used, `option.{u}` and `option.{v}` are not one function applied to two universe names but one polymorphic definition instantiated twice. This means that whatever works on `option.{u}` is hard to transport over to `option.{v}`. `uliftable` is an attempt at improving the situation. `uliftable option.{u} option.{v}` gives us a generic and composable way to use `option.{u}` in a context that requires `option.{v}`. It is often used in tandem with `ulift` but the two are purposefully decoupled. ## Main definitions * `uliftable` class ## Tags universe polymorphism functor -/ universes u₀ u₁ v₀ v₁ v₂ w w₀ w₁ variables {s : Type u₀} {s' : Type u₁} {r r' w w' : Type*} /-- Given a universe polymorphic type family `M.{u} : Type u₁ → Type u₂`, this class convert between instantiations, from `M.{u} : Type u₁ → Type u₂` to `M.{v} : Type v₁ → Type v₂` and back -/ class uliftable (f : Type u₀ → Type u₁) (g : Type v₀ → Type v₁) := (congr [] {α β} : α ≃ β → f α ≃ g β) namespace uliftable /-- The most common practical use `uliftable` (together with `up`), this function takes `x : M.{u} α` and lifts it to M.{max u v} (ulift.{v} α) -/ @[reducible] def up {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g] {α} : f α → g (ulift α) := (uliftable.congr f g equiv.ulift.symm).to_fun /-- The most common practical use of `uliftable` (together with `up`), this function takes `x : M.{max u v} (ulift.{v} α)` and lowers it to `M.{u} α` -/ @[reducible] def down {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g] {α} : g (ulift α) → f α := (uliftable.congr f g equiv.ulift.symm).inv_fun /-- convenient shortcut to avoid manipulating `ulift` -/ def adapt_up (F : Type v₀ → Type v₁) (G : Type (max v₀ u₀) → Type u₁) [uliftable F G] [monad G] {α β} (x : F α) (f : α → G β) : G β := up x >>= f ∘ ulift.down /-- convenient shortcut to avoid manipulating `ulift` -/ def adapt_down {F : Type (max u₀ v₀) → Type u₁} {G : Type v₀ → Type v₁} [L : uliftable G F] [monad F] {α β} (x : F α) (f : α → G β) : G β := @down.{v₀ v₁ (max u₀ v₀)} G F L β $ x >>= @up.{v₀ v₁ (max u₀ v₀)} G F L β ∘ f /-- map function that moves up universes -/ def up_map {F : Type u₀ → Type u₁} {G : Type.{max u₀ v₀} → Type v₁} [inst : uliftable F G] [functor G] {α β} (f : α → β) (x : F α) : G β := functor.map (f ∘ ulift.down) (up x) /-- map function that moves down universes -/ def down_map {F : Type.{max u₀ v₀} → Type u₁} {G : Type u₀ → Type v₁} [inst : uliftable G F] [functor F] {α β} (f : α → β) (x : F α) : G β := down (functor.map (ulift.up ∘ f) x : F (ulift β)) @[simp] lemma up_down {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g] {α} (x : g (ulift α)) : up (down x : f α) = x := (uliftable.congr f g equiv.ulift.symm).right_inv _ @[simp] lemma down_up {f : Type u₀ → Type u₁} {g : Type (max u₀ v₀) → Type v₁} [uliftable f g] {α} (x : f α) : down (up x : g _) = x := (uliftable.congr f g equiv.ulift.symm).left_inv _ end uliftable open ulift instance : uliftable id id := { congr := λ α β F, F } /-- for specific state types, this function helps to create a uliftable instance -/ def state_t.uliftable' {m : Type u₀ → Type v₀} {m' : Type u₁ → Type v₁} [uliftable m m'] (F : s ≃ s') : uliftable (state_t s m) (state_t s' m') := { congr := λ α β G, state_t.equiv $ equiv.Pi_congr F $ λ _, uliftable.congr _ _ $ equiv.prod_congr G F } instance {m m'} [uliftable m m'] : uliftable (state_t s m) (state_t (ulift s) m') := state_t.uliftable' equiv.ulift.symm /-- for specific reader monads, this function helps to create a uliftable instance -/ def reader_t.uliftable' {m m'} [uliftable m m'] (F : s ≃ s') : uliftable (reader_t s m) (reader_t s' m') := { congr := λ α β G, reader_t.equiv $ equiv.Pi_congr F $ λ _, uliftable.congr _ _ G } instance {m m'} [uliftable m m'] : uliftable (reader_t s m) (reader_t (ulift s) m') := reader_t.uliftable' equiv.ulift.symm /-- for specific continuation passing monads, this function helps to create a uliftable instance -/ def cont_t.uliftable' {m m'} [uliftable m m'] (F : r ≃ r') : uliftable (cont_t r m) (cont_t r' m') := { congr := λ α β, cont_t.equiv (uliftable.congr _ _ F) } instance {s m m'} [uliftable m m'] : uliftable (cont_t s m) (cont_t (ulift s) m') := cont_t.uliftable' equiv.ulift.symm /-- for specific writer monads, this function helps to create a uliftable instance -/ def writer_t.uliftable' {m m'} [uliftable m m'] (F : w ≃ w') : uliftable (writer_t w m) (writer_t w' m') := { congr := λ α β G, writer_t.equiv $ uliftable.congr _ _ $ equiv.prod_congr G F } instance {m m'} [uliftable m m'] : uliftable (writer_t s m) (writer_t (ulift s) m') := writer_t.uliftable' equiv.ulift.symm