/- Copyright (c) 2021 Lu-Ming Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Lu-Ming Zhang -/ import data.matrix.basic /-! # Orthogonal This file contains definitions and properties concerning orthogonality of rows and columns. ## Main results - `matrix.has_orthogonal_rows`: `A.has_orthogonal_rows` means `A` has orthogonal (with respect to `dot_product`) rows. - `matrix.has_orthogonal_cols`: `A.has_orthogonal_cols` means `A` has orthogonal (with respect to `dot_product`) columns. ## Tags orthogonal -/ namespace matrix variables {α n m : Type*} variables [has_mul α] [add_comm_monoid α] variables (A : matrix m n α) open_locale matrix /-- `A.has_orthogonal_rows` means matrix `A` has orthogonal rows (with respect to `matrix.dot_product`). -/ def has_orthogonal_rows [fintype n] : Prop := ∀ ⦃i₁ i₂⦄, i₁ ≠ i₂ → dot_product (A i₁) (A i₂) = 0 /-- `A.has_orthogonal_rows` means matrix `A` has orthogonal columns (with respect to `matrix.dot_product`). -/ def has_orthogonal_cols [fintype m] : Prop := has_orthogonal_rows Aᵀ /-- `Aᵀ` has orthogonal rows iff `A` has orthogonal columns. -/ @[simp] lemma transpose_has_orthogonal_rows_iff_has_orthogonal_cols [fintype m] : Aᵀ.has_orthogonal_rows ↔ A.has_orthogonal_cols := iff.rfl /-- `Aᵀ` has orthogonal columns iff `A` has orthogonal rows. -/ @[simp] lemma transpose_has_orthogonal_cols_iff_has_orthogonal_rows [fintype n] : Aᵀ.has_orthogonal_cols ↔ A.has_orthogonal_rows := iff.rfl variables {A} lemma has_orthogonal_rows.has_orthogonal_cols [fintype m] (h : Aᵀ.has_orthogonal_rows) : A.has_orthogonal_cols := h lemma has_orthogonal_cols.transpose_has_orthogonal_rows [fintype m] (h : A.has_orthogonal_cols) : Aᵀ.has_orthogonal_rows := h lemma has_orthogonal_cols.has_orthogonal_rows [fintype n] (h : Aᵀ.has_orthogonal_cols) : A.has_orthogonal_rows := h lemma has_orthogonal_rows.transpose_has_orthogonal_cols [fintype n] (h : A.has_orthogonal_rows) : Aᵀ.has_orthogonal_cols := h end matrix