/- Copyright (c) 2020 Bolton Bailey. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Bolton Bailey -/ import data.fintype.basic import group_theory.order_of_element import tactic.zify import data.nat.totient import data.zmod.basic /-! # The Lucas test for primes. This file implements the Lucas test for primes (not to be confused with the Lucas-Lehmer test for Mersenne primes). A number `a` witnesses that `n` is prime if `a` has order `n-1` in the multiplicative group of integers mod `n`. This is checked by verifying that `a^(n-1) = 1 (mod n)` and `a^d ≠ 1 (mod n)` for any divisor `d | n - 1`. This test is the basis of the Pratt primality certificate. ## TODO - Bonus: Show the reverse implication i.e. if a number is prime then it has a Lucas witness. Use `units.is_cyclic` from `ring_theory/integral_domain` to show the group is cyclic. - Write a tactic that uses this theorem to generate Pratt primality certificates - Integrate Pratt primality certificates into the norm_num primality verifier ## Implementation notes Note that the proof for `lucas_primality` relies on analyzing the multiplicative group modulo `p`. Despite this, the theorem still holds vacuously for `p = 0` and `p = 1`: In these cases, we can take `q` to be any prime and see that `hd` does not hold, since `a^((p-1)/q)` reduces to `1`. -/ /-- If `a^(p-1) = 1 mod p`, but `a^((p-1)/q) ≠ 1 mod p` for all prime factors `q` of `p-1`, then `p` is prime. This is true because `a` has order `p-1` in the multiplicative group mod `p`, so this group must itself have order `p-1`, which only happens when `p` is prime. -/ theorem lucas_primality (p : ℕ) (a : zmod p) (ha : a^(p-1) = 1) (hd : ∀ q : ℕ, q.prime → q ∣ (p-1) → a^((p-1)/q) ≠ 1) : p.prime := begin have h0 : p ≠ 0, { rintro ⟨⟩, exact hd 2 nat.prime_two (dvd_zero _) (pow_zero _) }, have h1 : p ≠ 1, { rintro ⟨⟩, exact hd 2 nat.prime_two (dvd_zero _) (pow_zero _) }, have hp1 : 1 < p := lt_of_le_of_ne h0.bot_lt h1.symm, have order_of_a : order_of a = p-1, { apply order_of_eq_of_pow_and_pow_div_prime _ ha hd, exact tsub_pos_of_lt hp1, }, haveI fhp0 : fact (0 < p) := ⟨h0.bot_lt⟩, rw nat.prime_iff_card_units, -- Prove cardinality of `units` of `zmod p` is both `≤ p-1` and `≥ p-1` refine le_antisymm (nat.card_units_zmod_lt_sub_one hp1) _, have hp' : p - 2 + 1 = p - 1 := tsub_add_eq_add_tsub hp1, let a' : (zmod p)ˣ := units.mk_of_mul_eq_one a (a ^ (p-2)) (by rw [←pow_succ, hp', ha]), calc p - 1 = order_of a : order_of_a.symm ... = order_of a' : order_of_injective (units.coe_hom (zmod p)) units.ext a' ... ≤ fintype.card (zmod p)ˣ : order_of_le_card_univ, end