/- Copyright (c) 2020 Patrick Stevens. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Stevens -/ import algebra.big_operators.associated import data.nat.choose.sum import data.nat.parity import tactic.ring_exp /-! # Primorial This file defines the primorial function (the product of primes less than or equal to some bound), and proves that `primorial n ≤ 4 ^ n`. ## Notations We use the local notation `n#` for the primorial of `n`: that is, the product of the primes less than or equal to `n`. -/ open finset open nat open_locale big_operators nat /-- The primorial `n#` of `n` is the product of the primes less than or equal to `n`. -/ def primorial (n : ℕ) : ℕ := ∏ p in (filter nat.prime (range (n + 1))), p local notation x`#` := primorial x lemma primorial_succ {n : ℕ} (n_big : 1 < n) (r : n % 2 = 1) : (n + 1)# = n# := begin refine prod_congr _ (λ _ _, rfl), rw [range_succ, filter_insert, if_neg (λ h, _)], have two_dvd : 2 ∣ n + 1 := dvd_iff_mod_eq_zero.mpr (by rw [← mod_add_mod, r, mod_self]), linarith [(h.dvd_iff_eq (nat.bit0_ne_one 1)).mp two_dvd], end lemma dvd_choose_of_middling_prime (p : ℕ) (is_prime : nat.prime p) (m : ℕ) (p_big : m + 1 < p) (p_small : p ≤ 2 * m + 1) : p ∣ choose (2 * m + 1) (m + 1) := begin have m_size : m + 1 ≤ 2 * m + 1 := le_of_lt (lt_of_lt_of_le p_big p_small), have s : ¬(p ∣ (m + 1)!), { intros p_div_fact, exact lt_le_antisymm p_big (is_prime.dvd_factorial.mp p_div_fact), }, have t : ¬(p ∣ (2 * m + 1 - (m + 1))!), { intros p_div_fact, refine lt_le_antisymm (lt_of_succ_lt p_big) _, convert is_prime.dvd_factorial.mp p_div_fact, rw [two_mul, add_assoc, nat.add_sub_cancel] }, have expanded : choose (2 * m + 1) (m + 1) * (m + 1)! * (2 * m + 1 - (m + 1))! = (2 * m + 1)! := @choose_mul_factorial_mul_factorial (2 * m + 1) (m + 1) m_size, have p_div_big_fact : p ∣ (2 * m + 1)! := (prime.dvd_factorial is_prime).mpr p_small, rw [←expanded, mul_assoc] at p_div_big_fact, obtain p_div_choose | p_div_facts : p ∣ choose (2 * m + 1) (m + 1) ∨ p ∣ _! * _! := (prime.dvd_mul is_prime).1 p_div_big_fact, { exact p_div_choose, }, cases (prime.dvd_mul is_prime).1 p_div_facts, exacts [(s h).elim, (t h).elim], end lemma primorial_le_4_pow : ∀ (n : ℕ), n# ≤ 4 ^ n | 0 := le_rfl | 1 := le_of_inf_eq rfl | (n + 2) := match nat.mod_two_eq_zero_or_one (n + 1) with | or.inl n_odd := match nat.even_iff.2 n_odd with | ⟨m, twice_m⟩ := have recurse : m + 1 < n + 2 := by linarith, begin calc (n + 2)# = ∏ i in filter nat.prime (range (2 * m + 2)), i : by simpa [two_mul, ←twice_m] ... = ∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2) ∪ range (m + 2)), i : begin rw [range_eq_Ico, finset.union_comm, finset.Ico_union_Ico_eq_Ico], { exact bot_le }, { simpa only [add_le_add_iff_right, two_mul] using nat.le_add_left m m }, end ... = ∏ i in (filter nat.prime (finset.Ico (m + 2) (2 * m + 2)) ∪ (filter nat.prime (range (m + 2)))), i : by rw filter_union ... = (∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2)), i) * (∏ i in filter nat.prime (range (m + 2)), i) : begin apply finset.prod_union, have disj : disjoint (finset.Ico (m + 2) (2 * m + 2)) (range (m + 2)), { simp only [finset.disjoint_left, and_imp, finset.mem_Ico, not_lt, finset.mem_range], intros _ pr _, exact pr, }, exact finset.disjoint_filter_filter disj, end ... ≤ (∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2)), i) * 4 ^ (m + 1) : nat.mul_le_mul_left _ (primorial_le_4_pow (m + 1)) ... ≤ (choose (2 * m + 1) (m + 1)) * 4 ^ (m + 1) : begin have s : ∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2)), i ∣ choose (2 * m + 1) (m + 1), { refine prod_primes_dvd (choose (2 * m + 1) (m + 1)) _ _, { intros a, rw [finset.mem_filter, nat.prime_iff], apply and.right, }, { intros a, rw finset.mem_filter, intros pr, rcases pr with ⟨ size, is_prime ⟩, simp only [finset.mem_Ico] at size, rcases size with ⟨ a_big , a_small ⟩, exact dvd_choose_of_middling_prime a is_prime m a_big (nat.lt_succ_iff.mp a_small), }, }, have r : ∏ i in filter nat.prime (finset.Ico (m + 2) (2 * m + 2)), i ≤ choose (2 * m + 1) (m + 1), { refine @nat.le_of_dvd _ _ _ s, exact @choose_pos (2 * m + 1) (m + 1) (by linarith), }, exact nat.mul_le_mul_right _ r, end ... = (choose (2 * m + 1) m) * 4 ^ (m + 1) : by rw choose_symm_half m ... ≤ 4 ^ m * 4 ^ (m + 1) : nat.mul_le_mul_right _ (choose_middle_le_pow m) ... = 4 ^ (2 * m + 1) : by ring_exp ... = 4 ^ (n + 2) : by rw [two_mul, ←twice_m], end end | or.inr n_even := begin obtain one_lt_n | n_le_one : 1 < n + 1 ∨ n + 1 ≤ 1 := lt_or_le 1 (n + 1), { rw primorial_succ one_lt_n n_even, calc (n + 1)# ≤ 4 ^ n.succ : primorial_le_4_pow (n + 1) ... ≤ 4 ^ (n + 2) : pow_le_pow (by norm_num) (nat.le_succ _), }, { have n_zero : n = 0 := eq_bot_iff.2 (succ_le_succ_iff.1 n_le_one), norm_num [n_zero, primorial, range_succ, prod_filter, nat.not_prime_zero, nat.prime_two] }, end end