/- Copyright (c) 2022 Kexing Ying. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kexing Ying -/ import probability.notation import probability.independence /-! # Probabilistic properties of the conditional expectation This file contains some properties about the conditional expectation which does not belong in the main conditional expectation file. ## Main result * `measure_theory.condexp_indep_eq`: If `m₁, m₂` are independent σ-algebras and `f` is a `m₁`-measurable function, then `𝔼[f | m₂] = 𝔼[f]` almost everywhere. -/ open topological_space filter open_locale nnreal ennreal measure_theory probability_theory big_operators namespace measure_theory open probability_theory variables {Ω E : Type*} [normed_add_comm_group E] [normed_space ℝ E] [complete_space E] {m₁ m₂ m : measurable_space Ω} {μ : measure Ω} {f : Ω → E} /-- If `m₁, m₂` are independent σ-algebras and `f` is `m₁`-measurable, then `𝔼[f | m₂] = 𝔼[f]` almost everywhere. -/ lemma condexp_indep_eq (hle₁ : m₁ ≤ m) (hle₂ : m₂ ≤ m) [sigma_finite (μ.trim hle₂)] (hf : strongly_measurable[m₁] f) (hindp : indep m₁ m₂ μ) : μ[f | m₂] =ᵐ[μ] λ x, μ[f] := begin by_cases hfint : integrable f μ, swap, { exact (integral_undef hfint).symm ▸ condexp_undef hfint }, have hfint₁ := hfint.trim hle₁ hf, refine (ae_eq_condexp_of_forall_set_integral_eq hle₂ hfint (λ s _ hs, integrable_on_const.2 (or.inr hs)) (λ s hms hs, _) strongly_measurable_const.ae_strongly_measurable').symm, rw set_integral_const, rw ← mem_ℒp_one_iff_integrable at hfint, refine hfint.induction_strongly_measurable hle₁ ennreal.one_ne_top _ _ _ _ _ _, { intros c t hmt ht, rw [integral_indicator (hle₁ _ hmt), set_integral_const, smul_smul, ← ennreal.to_real_mul, mul_comm, ← hindp _ _ hmt hms, set_integral_indicator (hle₁ _ hmt), set_integral_const, set.inter_comm] }, { intros u v hdisj huint hvint hu hv hu_eq hv_eq, rw mem_ℒp_one_iff_integrable at huint hvint, rw [integral_add' huint hvint, smul_add, hu_eq, hv_eq, integral_add' huint.integrable_on hvint.integrable_on], }, { have heq₁ : (λ f : Lp_meas E ℝ m₁ 1 μ, ∫ x, f x ∂μ) = (λ f : Lp E 1 μ, ∫ x, f x ∂μ) ∘ (submodule.subtypeL _), { refine funext (λ f, integral_congr_ae _), simp_rw [submodule.coe_subtypeL', submodule.coe_subtype, ← coe_fn_coe_base], }, have heq₂ : (λ f : Lp_meas E ℝ m₁ 1 μ, ∫ x in s, f x ∂μ) = (λ f : Lp E 1 μ, ∫ x in s, f x ∂μ) ∘ (submodule.subtypeL _), { refine funext (λ f, integral_congr_ae (ae_restrict_of_ae _)), simp_rw [submodule.coe_subtypeL', submodule.coe_subtype, ← coe_fn_coe_base], exact eventually_of_forall (λ _, rfl), }, refine is_closed_eq (continuous.const_smul _ _) _, { rw heq₁, exact continuous_integral.comp (continuous_linear_map.continuous _), }, { rw heq₂, exact (continuous_set_integral _).comp (continuous_linear_map.continuous _), }, }, { intros u v huv huint hueq, rwa [← integral_congr_ae huv, ← (set_integral_congr_ae (hle₂ _ hms) _ : ∫ x in s, u x ∂μ = ∫ x in s, v x ∂μ)], filter_upwards [huv] with x hx _ using hx, }, { exact ⟨f, hf, eventually_eq.rfl⟩, }, end end measure_theory