/- Copyright (c) 2022 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import probability.notation import probability.integration /-! # Variance of random variables We define the variance of a real-valued random variable as `Var[X] = 𝔼[(X - 𝔼[X])^2]` (in the `probability_theory` locale). We prove the basic properties of the variance: * `variance_le_expectation_sq`: the inequality `Var[X] ≤ 𝔼[X^2]`. * `meas_ge_le_variance_div_sq`: Chebyshev's inequality, i.e., `ℙ {ω | c ≤ |X ω - 𝔼[X]|} ≤ ennreal.of_real (Var[X] / c ^ 2)`. * `indep_fun.variance_add`: the variance of the sum of two independent random variables is the sum of the variances. * `indep_fun.variance_sum`: the variance of a finite sum of pairwise independent random variables is the sum of the variances. -/ open measure_theory filter finset noncomputable theory open_locale big_operators measure_theory probability_theory ennreal nnreal namespace probability_theory /-- The variance of a random variable is `𝔼[X^2] - 𝔼[X]^2` or, equivalently, `𝔼[(X - 𝔼[X])^2]`. We use the latter as the definition, to ensure better behavior even in garbage situations. -/ def variance {Ω : Type*} {m : measurable_space Ω} (f : Ω → ℝ) (μ : measure Ω) : ℝ := μ[(f - (λ ω, μ[f])) ^ 2] @[simp] lemma variance_zero {Ω : Type*} {m : measurable_space Ω} (μ : measure Ω) : variance 0 μ = 0 := by simp [variance] lemma variance_nonneg {Ω : Type*} {m : measurable_space Ω} (f : Ω → ℝ) (μ : measure Ω) : 0 ≤ variance f μ := integral_nonneg (λ ω, sq_nonneg _) lemma variance_mul {Ω : Type*} {m : measurable_space Ω} (c : ℝ) (f : Ω → ℝ) (μ : measure Ω) : variance (λ ω, c * f ω) μ = c^2 * variance f μ := calc variance (λ ω, c * f ω) μ = ∫ x, (c * f x - ∫ y, c * f y ∂μ) ^ 2 ∂μ : rfl ... = ∫ x, (c * (f x - ∫ y, f y ∂μ)) ^ 2 ∂μ : by { congr' 1 with x, simp_rw [integral_mul_left, mul_sub] } ... = c^2 * variance f μ : by { simp_rw [mul_pow, integral_mul_left], refl } lemma variance_smul {Ω : Type*} {m : measurable_space Ω} (c : ℝ) (f : Ω → ℝ) (μ : measure Ω) : variance (c • f) μ = c^2 * variance f μ := variance_mul c f μ lemma variance_smul' {A : Type*} [comm_semiring A] [algebra A ℝ] {Ω : Type*} {m : measurable_space Ω} (c : A) (f : Ω → ℝ) (μ : measure Ω) : variance (c • f) μ = c^2 • variance f μ := begin convert variance_smul (algebra_map A ℝ c) f μ, { ext1 x, simp only [algebra_map_smul], }, { simp only [algebra.smul_def, map_pow], } end localized "notation `Var[` X `]` := probability_theory.variance X measure_theory.measure_space.volume" in probability_theory variables {Ω : Type*} [measure_space Ω] [is_probability_measure (volume : measure Ω)] lemma variance_def' {X : Ω → ℝ} (hX : mem_ℒp X 2) : Var[X] = 𝔼[X^2] - 𝔼[X]^2 := begin rw [variance, sub_sq', integral_sub', integral_add'], rotate, { exact hX.integrable_sq }, { convert integrable_const (𝔼[X] ^ 2), apply_instance }, { apply hX.integrable_sq.add, convert integrable_const (𝔼[X] ^ 2), apply_instance }, { exact ((hX.integrable one_le_two).const_mul 2).mul_const' _ }, simp only [integral_mul_right, pi.pow_apply, pi.mul_apply, pi.bit0_apply, pi.one_apply, integral_const (integral ℙ X ^ 2), integral_mul_left (2 : ℝ), one_mul, variance, pi.pow_apply, measure_univ, ennreal.one_to_real, algebra.id.smul_eq_mul], ring, end lemma variance_le_expectation_sq {X : Ω → ℝ} : Var[X] ≤ 𝔼[X^2] := begin by_cases h_int : integrable X, swap, { simp only [variance, integral_undef h_int, pi.pow_apply, pi.sub_apply, sub_zero] }, by_cases hX : mem_ℒp X 2, { rw variance_def' hX, simp only [sq_nonneg, sub_le_self_iff] }, { rw [variance, integral_undef], { exact integral_nonneg (λ a, sq_nonneg _) }, { assume h, have A : mem_ℒp (X - λ (ω : Ω), 𝔼[X]) 2 ℙ := (mem_ℒp_two_iff_integrable_sq (h_int.ae_strongly_measurable.sub ae_strongly_measurable_const)).2 h, have B : mem_ℒp (λ (ω : Ω), 𝔼[X]) 2 ℙ := mem_ℒp_const _, apply hX, convert A.add B, simp } } end /-- *Chebyshev's inequality* : one can control the deviation probability of a real random variable from its expectation in terms of the variance. -/ theorem meas_ge_le_variance_div_sq {X : Ω → ℝ} (hX : mem_ℒp X 2) {c : ℝ} (hc : 0 < c) : ℙ {ω | c ≤ |X ω - 𝔼[X]|} ≤ ennreal.of_real (Var[X] / c ^ 2) := begin have A : (ennreal.of_real c : ℝ≥0∞) ≠ 0, by simp only [hc, ne.def, ennreal.of_real_eq_zero, not_le], have B : ae_strongly_measurable (λ (ω : Ω), 𝔼[X]) ℙ := ae_strongly_measurable_const, convert meas_ge_le_mul_pow_snorm ℙ ennreal.two_ne_zero ennreal.two_ne_top (hX.ae_strongly_measurable.sub B) A, { ext ω, set d : ℝ≥0 := ⟨c, hc.le⟩ with hd, have cd : c = d, by simp only [subtype.coe_mk], simp only [pi.sub_apply, ennreal.coe_le_coe, ← real.norm_eq_abs, ← coe_nnnorm, nnreal.coe_le_coe, cd, ennreal.of_real_coe_nnreal] }, { rw (hX.sub (mem_ℒp_const _)).snorm_eq_integral_rpow_norm ennreal.two_ne_zero ennreal.two_ne_top, simp only [pi.sub_apply, ennreal.to_real_bit0, ennreal.one_to_real], rw ennreal.of_real_rpow_of_nonneg _ zero_le_two, rotate, { apply real.rpow_nonneg_of_nonneg, exact integral_nonneg (λ x, real.rpow_nonneg_of_nonneg (norm_nonneg _) _) }, rw [variance, ← real.rpow_mul, inv_mul_cancel], rotate, { exact two_ne_zero }, { exact integral_nonneg (λ x, real.rpow_nonneg_of_nonneg (norm_nonneg _) _) }, simp only [pi.pow_apply, pi.sub_apply, real.rpow_two, real.rpow_one, real.norm_eq_abs, pow_bit0_abs, ennreal.of_real_inv_of_pos hc, ennreal.rpow_two], rw [← ennreal.of_real_pow (inv_nonneg.2 hc.le), ← ennreal.of_real_mul (sq_nonneg _), div_eq_inv_mul, inv_pow] } end /-- The variance of the sum of two independent random variables is the sum of the variances. -/ theorem indep_fun.variance_add {X Y : Ω → ℝ} (hX : mem_ℒp X 2) (hY : mem_ℒp Y 2) (h : indep_fun X Y) : Var[X + Y] = Var[X] + Var[Y] := calc Var[X + Y] = 𝔼[λ a, (X a)^2 + (Y a)^2 + 2 * X a * Y a] - 𝔼[X+Y]^2 : by simp [variance_def' (hX.add hY), add_sq'] ... = (𝔼[X^2] + 𝔼[Y^2] + 2 * 𝔼[X * Y]) - (𝔼[X] + 𝔼[Y])^2 : begin simp only [pi.add_apply, pi.pow_apply, pi.mul_apply, mul_assoc], rw [integral_add, integral_add, integral_add, integral_mul_left], { exact hX.integrable one_le_two }, { exact hY.integrable one_le_two }, { exact hX.integrable_sq }, { exact hY.integrable_sq }, { exact hX.integrable_sq.add hY.integrable_sq }, { apply integrable.const_mul, exact h.integrable_mul (hX.integrable one_le_two) (hY.integrable one_le_two) } end ... = (𝔼[X^2] + 𝔼[Y^2] + 2 * (𝔼[X] * 𝔼[Y])) - (𝔼[X] + 𝔼[Y])^2 : begin congr, exact h.integral_mul_of_integrable (hX.integrable one_le_two) (hY.integrable one_le_two), end ... = Var[X] + Var[Y] : by { simp only [variance_def', hX, hY, pi.pow_apply], ring } /-- The variance of a finite sum of pairwise independent random variables is the sum of the variances. -/ theorem indep_fun.variance_sum {ι : Type*} {X : ι → Ω → ℝ} {s : finset ι} (hs : ∀ i ∈ s, mem_ℒp (X i) 2) (h : set.pairwise ↑s (λ i j, indep_fun (X i) (X j))) : Var[∑ i in s, X i] = ∑ i in s, Var[X i] := begin classical, induction s using finset.induction_on with k s ks IH, { simp only [finset.sum_empty, variance_zero] }, rw [variance_def' (mem_ℒp_finset_sum' _ hs), sum_insert ks, sum_insert ks], simp only [add_sq'], calc 𝔼[X k ^ 2 + (∑ i in s, X i) ^ 2 + 2 * X k * ∑ i in s, X i] - 𝔼[X k + ∑ i in s, X i] ^ 2 = (𝔼[X k ^ 2] + 𝔼[(∑ i in s, X i) ^ 2] + 𝔼[2 * X k * ∑ i in s, X i]) - (𝔼[X k] + 𝔼[∑ i in s, X i]) ^ 2 : begin rw [integral_add', integral_add', integral_add'], { exact mem_ℒp.integrable one_le_two (hs _ (mem_insert_self _ _)) }, { apply integrable_finset_sum' _ (λ i hi, _), exact mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)) }, { exact mem_ℒp.integrable_sq (hs _ (mem_insert_self _ _)) }, { apply mem_ℒp.integrable_sq, exact mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))) }, { apply integrable.add, { exact mem_ℒp.integrable_sq (hs _ (mem_insert_self _ _)) }, { apply mem_ℒp.integrable_sq, exact mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))) } }, { rw mul_assoc, apply integrable.const_mul _ 2, simp only [mul_sum, sum_apply, pi.mul_apply], apply integrable_finset_sum _ (λ i hi, _), apply indep_fun.integrable_mul _ (mem_ℒp.integrable one_le_two (hs _ (mem_insert_self _ _))) (mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))), apply h (mem_insert_self _ _) (mem_insert_of_mem hi), exact (λ hki, ks (hki.symm ▸ hi)) } end ... = Var[X k] + Var[∑ i in s, X i] + (𝔼[2 * X k * ∑ i in s, X i] - 2 * 𝔼[X k] * 𝔼[∑ i in s, X i]) : begin rw [variance_def' (hs _ (mem_insert_self _ _)), variance_def' (mem_ℒp_finset_sum' _ (λ i hi, (hs _ (mem_insert_of_mem hi))))], ring, end ... = Var[X k] + Var[∑ i in s, X i] : begin simp only [mul_assoc, integral_mul_left, pi.mul_apply, pi.bit0_apply, pi.one_apply, sum_apply, add_right_eq_self, mul_sum], rw integral_finset_sum s (λ i hi, _), swap, { apply integrable.const_mul _ 2, apply indep_fun.integrable_mul _ (mem_ℒp.integrable one_le_two (hs _ (mem_insert_self _ _))) (mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))), apply h (mem_insert_self _ _) (mem_insert_of_mem hi), exact (λ hki, ks (hki.symm ▸ hi)) }, rw [integral_finset_sum s (λ i hi, (mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)))), mul_sum, mul_sum, ← sum_sub_distrib], apply finset.sum_eq_zero (λ i hi, _), rw [integral_mul_left, indep_fun.integral_mul_of_integrable', sub_self], { apply h (mem_insert_self _ _) (mem_insert_of_mem hi), exact (λ hki, ks (hki.symm ▸ hi)) }, { exact mem_ℒp.integrable one_le_two (hs _ (mem_insert_self _ _)) }, { exact mem_ℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)) } end ... = Var[X k] + ∑ i in s, Var[X i] : by rw IH (λ i hi, hs i (mem_insert_of_mem hi)) (h.mono (by simp only [coe_insert, set.subset_insert])) end end probability_theory