import Huber_ring.localization import Spa.rational_open_data /-! # Extending continuous valuations on Huber rings In this file, we extend continuous valuations on Huber rings R to rational localizations R(T/s) and their completions. This is an important step in the definition of the structure presheaf on the adic spectrum. -/ noncomputable theory local attribute [instance] valued.subgroups_basis valued.uniform_space local postfix `⁺` : 66 := λ A : Huber_pair, A.plus variables {A : Huber_pair} {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀] {v : valuation A Γ₀} {rd : spa.rational_open_data A} (hv : valuation.is_continuous v) namespace Huber_pair open valuation linear_ordered_structure local attribute [instance] set.smul_set_action local notation `A⟮T/s⟯` := spa.rational_open_data.localization rd local notation `s` := rd.s local notation `T` := rd.T /-- An auxilliary definition that constructs s as unit in the valuation field of a valuation v, under the assumption that v s ≠ 0.-/ def unit_s (hs : v s ≠ 0) : units (valuation_field v) := units.mk0 (valuation_field_mk v s) $ valuation_field_mk_ne_zero v s hs example : (λ r, localization.of (valuation_ID_mk v r)) = valuation_field_mk v := rfl set_option class.instance_max_depth 64 /--The set T/s (for some rational open subset D(T,s)) considered as subset of the valuation field.-/ def v_T_over_s (hs : v s ≠ 0) : set (valuation_field v) := ((unit_s hs)⁻¹ : v.valuation_field) • ((valuation_field_mk v) '' rd.T) lemma v_T_over_s_le_one (hs : v s ≠ 0) (hT2 : ∀ t : A, t ∈ T → v t ≤ v s) : v_T_over_s hs ⊆ {x : valuation_field v | valuation_field.canonical_valuation v x ≤ 1} := begin let v' := valuation_field.canonical_valuation v, intros k Hk, show v' k ≤ 1, let u := unit_s hs, have remember_this : valuation_field_mk v s = u.val := rfl, unfold v_T_over_s at Hk, rcases Hk with ⟨l, ⟨t, ht, rfl⟩, rfl⟩, rw [smul_eq_mul, v'.map_mul], change v' (↑(unit_s hs)⁻¹) * _ ≤ _, rw mul_comm, apply le_of_le_mul_right (group_with_zero.unit_ne_zero $ units.map (v' : v.valuation_field →* (value_monoid v)) u), show v' _ * v' _ * v' u ≤ _, rw [mul_assoc, one_mul, ← v'.map_mul, units.inv_mul, v'.map_one, mul_one], change canonical_valuation v t ≤ v' u.val, rw ← remember_this, change _ ≤ canonical_valuation v s, rw canonical_valuation_is_equiv v, exact hT2 _ ht, end lemma v_le_one_is_bounded {R : Type*} [comm_ring R] (v : valuation R Γ₀) : is_bounded {x : valuation_field v | valuation_field.canonical_valuation v x ≤ 1} := begin let v' := valuation_field.canonical_valuation v, intros U HU, rcases subgroups_basis.mem_nhds_zero.mp HU with ⟨_, ⟨γ, rfl⟩, H⟩, let V := {k : valuation_field v | v' k < ↑γ}, use V, existsi _, swap, { rw subgroups_basis.mem_nhds_zero, use [V, set.mem_range_self _] }, intros w Hw b Hb, change V ⊆ U at H, change v' w < γ at Hw, change v' b ≤ 1 at Hb, apply set.mem_of_mem_of_subset _ H, change v' (w * b) < γ, rw v'.map_mul, exact actual_ordered_comm_monoid.mul_lt_of_lt_of_nongt_one' Hw Hb, end lemma v_le_one_is_power_bounded {R : Type*} [comm_ring R] (v : valuation R Γ₀) : is_power_bounded_subset {x : valuation_field v | valuation_field.canonical_valuation v x ≤ 1} := begin let v' := valuation_field.canonical_valuation v, refine is_bounded.subset _ (v_le_one_is_bounded v), intros x hx, induction hx with a ha a b ha' hb' ha hb, { assumption }, { show v' 1 ≤ 1, rw v'.map_one, }, { show v' (a * b) ≤ 1, rw v'.map_mul, exact actual_ordered_comm_monoid.mul_nongt_one' ha hb, } end lemma v_T_over_s_is_power_bounded (hs : v s ≠ 0) (hT2 : ∀ t : A, t ∈ T → v t ≤ v s) : is_power_bounded_subset (v_T_over_s hs) := begin apply power_bounded.subset (v_T_over_s_le_one hs hT2), exact v_le_one_is_power_bounded v end /--The natural map from the localization A⟮T/s⟯ of a Huber pair A at a rational open subset R(T/s) to the valuation field of a valuation that does not have s in its support.-/ noncomputable def to_valuation_field (hs : v s ≠ 0) : A⟮T/s⟯ → (valuation_field v) := Huber_ring.away.lift T s (valuation_field_mk v) (unit_s hs) rfl /-- The natural map from A⟮T/s⟯ to the valuation field is a ring homomorphism. -/ instance (hs : v s ≠ 0) : is_ring_hom (to_valuation_field hs) := by delta to_valuation_field; apply_instance local attribute [instance] valued.subgroups_basis theorem to_valuation_field_cts' (hs : v s ≠ 0)(hT2 : ∀ t : A, t ∈ T → v t ≤ v s) (hv : is_continuous v) : continuous (to_valuation_field hs) := Huber_ring.away.lift_continuous T s (by convert subgroups_basis.nonarchimedean) (continuous_valuation_field_mk_of_continuous v hv) _ rfl (rd.Hopen) (v_T_over_s_is_power_bounded hs hT2) -- now we need that the triangles commute when we fix v but change s. theorem to_valuation_field_commutes (r1 r2 : spa.rational_open_data A) (h : r1 ≤ r2) (hs1 : v r1.s ≠ 0) (hs2 : v r2.s ≠ 0) : to_valuation_field hs1 = (to_valuation_field hs2) ∘ (spa.rational_open_data.localization_map h) := begin refine localization.funext (to_valuation_field hs1 : localization A (powers r1.s) → valuation_field v) ((to_valuation_field hs2) ∘ (spa.rational_open_data.localization_map h) : localization A (powers r1.s) → valuation_field v) _, intro r, delta to_valuation_field spa.rational_open_data.localization_map function.comp, erw Huber_ring.away.lift_of, erw Huber_ring.away.lift_of, change _ = Huber_ring.away.lift (r2.T) (r2.s) _ _ _ (localization.of r), rw Huber_ring.away.lift_of, end namespace rational_open_data lemma to_valuation_field_cts_aux {r : spa.rational_open_data A} {v : spa A} (hv : v ∈ r.open_set) : (Spv.out v.1) (r.s) ≠ 0 := hv.2 /-- The natural map from A(T/s) to the valuation field of a valuation v contained in the rational open subset R(T/s). -/ def to_valuation_field {r : spa.rational_open_data A} {v : spa A} (hv : v ∈ r.open_set) : spa.rational_open_data.localization r → valuation_field (Spv.out (v.val)) := (to_valuation_field $ to_valuation_field_cts_aux hv) /-- The natural map from A(T/s) to the valuation field of a valuation v contained in the rational open subset R(T/s) is a ring homomorphism. -/ instance {r : spa.rational_open_data A} {v : spa A} (hv : v ∈ r.open_set) : is_ring_hom (to_valuation_field hv) := by {delta to_valuation_field, apply_instance} /-- If v : spa A is in D(T,s) then the map A(T/s) -> K_v is continuous -/ theorem to_valuation_field_cts {r : spa.rational_open_data A} {v : spa A} (hv : v ∈ r.open_set) : continuous (to_valuation_field hv) := Huber_pair.to_valuation_field_cts' hv.2 hv.1 v.2.1 -- Now we need to show that if r1 <= r2 then these to_valuation_field maps -- are compatible. theorem to_valuation_field_commutes {r1 r2 : spa.rational_open_data A} {v : spa A} (hv1 : v ∈ r1.open_set) (hv2 : v ∈ r2.open_set) (h : r1 ≤ r2) : (to_valuation_field hv1) = (to_valuation_field hv2) ∘ (spa.rational_open_data.localization_map h) := to_valuation_field_commutes r1 r2 h hv1.2 hv2.2 end rational_open_data end Huber_pair