import valuation.field import valuation.canonical /-! # The valuation on the completion of the valuation field In this file we extend the canonical valuation on the the valuation field of (R, v) to its completion (for the topological field structure coming from the valuation). -/ noncomputable theory open valuation uniform_space local attribute [instance] valued.subgroups_basis valued.uniform_space variables {Γ₀ : Type*} [linear_ordered_comm_group_with_zero Γ₀] variables {R : Type*} [comm_ring R] (v : valuation R Γ₀) local notation `hat` K := completion K namespace valuation_field /--The valuation field of a valuation is naturally a valued field.-/ instance : valued (valuation_field v) := ⟨value_monoid v, valuation_field.canonical_valuation v⟩ /--The topology on the valuation field of a valuation.-/ instance : topological_space (valuation_field v) := subgroups_basis.topology _ /--The valuation field of a valuation is a topological ring.-/ instance : topological_ring (valuation_field v) := ring_filter_basis.is_topological_ring _ rfl /--The valuation field of a valuation is a uniform additive group.-/ instance : uniform_add_group (valuation_field v) := topological_add_group_is_uniform -- This instance shouldn't be necessary. Why doesn't the general machinery step in? /--The completion of the valuation field of a valuation is a commutative ring.-/ instance : comm_ring (hat v.valuation_field) := completion.comm_ring _ -- The following instance is even more suspicious. /--The completion of the valuation field of a valuation is a ring.-/ instance : ring (hat v.valuation_field) := comm_ring.to_ring _ end valuation_field /--The valuation on the completion of the valuation field of a valuation.-/ def valuation_on_completion (v : valuation R Γ₀) : valuation (hat v.valuation_field) (value_monoid v) := valued.extension_valuation /--The completion of the valuation field of a valuation is a valued field.-/ instance valuation_field.completion_valued : valued (completion $ valuation_field v) := ⟨value_monoid v, valuation_on_completion v⟩