theory Polygon imports Counterclockwise_2D_Strict begin subsection \Polygonal chains\ definition "polychain xs = (\i. Suc i snd (xs ! i) = (fst (xs ! Suc i)))" lemma polychainI: assumes "\i. Suc i < length xs \ snd (xs ! i) = fst (xs ! Suc i)" shows "polychain xs" by (auto intro!: assms simp: polychain_def) lemma polychain_Nil[simp]: "polychain [] = True" and polychain_singleton[simp]: "polychain [x] = True" by (auto simp: polychain_def) lemma polychain_Cons: "polychain (y # ys) = (if ys = [] then True else snd y = fst (ys ! 0) \ polychain ys)" by (auto simp: polychain_def nth_Cons split: nat.split) lemma polychain_appendI: "polychain xs \ polychain ys \ (xs \ [] \ ys \ [] \ snd (last xs) = fst (hd ys)) \ polychain (xs @ ys)" by (induct xs arbitrary: ys) (auto simp add: polychain_Cons nth_append hd_conv_nth split: if_split_asm) fun pairself where "pairself f (x, y) = (f x, f y)" lemma pairself_apply: "pairself f x = (f (fst x), f (snd x))" by (cases x, simp) lemma polychain_map_pairself: "polychain xs \ polychain (map (pairself f) xs)" by (auto simp: polychain_def pairself_apply) definition "convex_polychain xs \ (polychain xs \ (\i. Suc i < length xs \ det3 (fst (xs ! i)) (snd (xs ! i)) (snd (xs ! Suc i)) > 0))" lemma convex_polychain_Cons2[simp]: "convex_polychain (x#y#zs) \ snd x = fst y \ det3 (fst x) (fst y) (snd y) > 0 \ convex_polychain (y#zs)" by (auto simp add: convex_polychain_def polychain_def nth_Cons split: nat.split) lemma convex_polychain_ConsD: assumes "convex_polychain (x#xs)" shows "convex_polychain xs" using assms by (auto simp: convex_polychain_def polychain_def nth_Cons split: nat.split) definition "convex_polygon xs \ (convex_polychain xs \ (xs \ [] \ fst (hd xs) = snd (last xs)))" lemma convex_polychain_Nil[simp]: "convex_polychain [] = True" and convex_polychain_Cons[simp]: "convex_polychain [x] = True" by (auto simp: convex_polychain_def) lemma convex_polygon_Cons2[simp]: "convex_polygon (x#y#zs) \ fst x = snd (last (y#zs)) \ convex_polychain (x#y#zs)" by (auto simp: convex_polygon_def convex_polychain_def polychain_def nth_Cons) lemma polychain_append_connected: "polychain (xs @ ys) \ xs \ [] \ ys \ [] \ fst (hd ys) = snd (last xs)" by (auto simp: convex_polychain_def nth_append not_less polychain_def last_conv_nth hd_conv_nth dest!: spec[where x = "length xs - 1"]) lemma convex_polychain_appendI: assumes cxs: "convex_polychain xs" assumes cys: "convex_polychain ys" assumes pxy: "polychain (xs @ ys)" assumes "xs \ [] \ ys \ [] \ det3 (fst (last xs)) (snd (last xs)) (snd (hd ys)) > 0" shows "convex_polychain (xs @ ys)" proof - { fix i assume "i < length xs" "length xs \ Suc i" "Suc i < length xs + length ys" hence "xs \ []" "ys \ []" "i = length xs - 1" by auto } thus ?thesis using assms by (auto simp: hd_conv_nth convex_polychain_def nth_append Suc_diff_le last_conv_nth ) qed lemma convex_polychainI: assumes "polychain xs" assumes "\i. Suc i < length xs \ det3 (fst (xs ! i)) (snd (xs ! i)) (snd (xs ! Suc i)) > 0" shows "convex_polychain xs" by (auto intro!: assms simp: convex_polychain_def ccw'_def) lemma convex_polygon_skip: assumes "convex_polygon (x # y # z # w # ws)" assumes "ccw'.sortedP (fst x) (map snd (butlast (x # y # z # w # ws)))" shows "convex_polygon ((fst x, snd y) # z # w # ws)" using assms by (auto elim!: ccw'.sortedP_Cons simp: ccw'_def[symmetric]) primrec polychain_of::"'a::ab_group_add \ 'a list \ ('a*'a) list" where "polychain_of xc [] = []" | "polychain_of xc (xm#xs) = (xc, xc + xm)#polychain_of (xc + xm) xs" lemma in_set_polychain_ofD: "ab \ set (polychain_of x xs) \ (snd ab - fst ab) \ set xs" by (induct xs arbitrary: x) auto lemma fst_polychain_of_nth_0[simp]: "xs \ [] \ fst ((polychain_of p xs) ! 0) = p" by (cases xs) (auto simp: Let_def) lemma fst_hd_polychain_of: "xs \ [] \ fst (hd (polychain_of x xs)) = x" by (cases xs) (auto simp: ) lemma length_polychain_of_eq[simp]: shows "length (polychain_of p qs) = length qs" by (induct qs arbitrary: p) simp_all lemma polychain_of_subsequent_eq: assumes "Suc i < length qs" shows "snd (polychain_of p qs ! i) = fst (polychain_of p qs ! Suc i)" using assms by (induct qs arbitrary: p i) (auto simp add: nth_Cons split: nat.split) lemma polychain_of_eq_empty_iff[simp]: "polychain_of p xs = [] \ xs = []" by (cases xs) (auto simp: Let_def) lemma in_set_polychain_of_imp_sum_list: assumes "z \ set (polychain_of Pc Ps)" obtains d where "z = (Pc + sum_list (take d Ps), Pc + sum_list (take (Suc d) Ps))" using assms apply atomize_elim proof (induction Ps arbitrary: Pc z) case Nil thus ?case by simp next case (Cons P Ps) hence "z = (Pc, Pc + P) \ z \ set (polychain_of (Pc + P) Ps)" by auto thus ?case proof assume "z \ set ((polychain_of (Pc + P) Ps))" from Cons.IH[OF this] obtain d where "z = (Pc + P + sum_list (take d Ps), Pc + P + sum_list (take (Suc d) Ps))" by auto thus ?case by (auto intro!: exI[where x="Suc d"]) qed (auto intro!: exI[where x=0]) qed lemma last_polychain_of: "length xs > 0 \ snd (last (polychain_of p xs)) = p + sum_list xs" by (induct xs arbitrary: p) simp_all lemma polychain_of_singleton_iff: "polychain_of p xs = [a] \ fst a = p \ xs = [(snd a - p)]" by (induct xs) auto lemma polychain_of_add: "polychain_of (x + y) xs = map (((+) (y, y))) (polychain_of x xs)" by (induct xs arbitrary: x y) (auto simp: algebra_simps) subsection \Dirvec: Inverse of Polychain\ primrec dirvec where "dirvec (x, y) = (y - x)" lemma dirvec_minus: "dirvec x = snd x - fst x" by (cases x) simp lemma dirvec_nth_polychain_of: "n < length xs \ dirvec ((polychain_of p xs) ! n ) = (xs ! n)" by (induct xs arbitrary: p n) (auto simp: nth_Cons split: nat.split) lemma dirvec_hd_polychain_of: "xs \ [] \ dirvec (hd (polychain_of p xs)) = (hd xs)" by (simp add: hd_conv_nth dirvec_nth_polychain_of) lemma dirvec_last_polychain_of: "xs \ [] \ dirvec (last (polychain_of p xs)) = (last xs)" by (simp add: last_conv_nth dirvec_nth_polychain_of) lemma map_dirvec_polychain_of[simp]: "map dirvec (polychain_of x xs) = xs" by (induct xs arbitrary: x) simp_all subsection \Polychain of Sorted (@{term polychain_of}, @{term ccw'.sortedP})\ lemma ccw'_sortedP_translateD: "linorder_list0.sortedP (ccw' x0) (map ((+) x \ g) xs) \ linorder_list0.sortedP (ccw' (x0 - x)) (map g xs)" proof (induct xs arbitrary: x0 x) case Nil thus ?case by (auto simp: linorder_list0.sortedP.Nil) next case (Cons a xs x0 x) hence "\y\set xs. ccw' (x0 - x) (g a) (g y)" by (auto elim!: linorder_list0.sortedP_Cons simp: ccw'.translate_origin algebra_simps) thus ?case using Cons.prems(1) by (auto elim!: linorder_list0.sortedP_Cons intro!: linorder_list0.sortedP.Cons simp: Cons.hyps) qed lemma ccw'_sortedP_translateI: "linorder_list0.sortedP (ccw' (x0 - x)) (map g xs) \ linorder_list0.sortedP (ccw' x0) (map ((+) x \ g) xs)" using ccw'_sortedP_translateD[of "x0 - x" "-x" "(+) x o g" xs] by (simp add: o_def) lemma ccw'_sortedP_translate_comp[simp]: "linorder_list0.sortedP (ccw' x0) (map ((+) x \ g) xs) \ linorder_list0.sortedP (ccw' (x0 - x)) (map g xs)" by (metis ccw'_sortedP_translateD ccw'_sortedP_translateI) lemma snd_plus_commute: "snd \ (+) (x0, x0) = (+) x0 o snd" by auto lemma ccw'_sortedP_renormalize: "ccw'.sortedP a (map snd (polychain_of (x0 + x) xs)) \ ccw'.sortedP (a - x0) (map snd (polychain_of x xs))" by (simp add: polychain_of_add add.commute snd_plus_commute) lemma ccw'_sortedP_polychain_of01: shows "ccw'.sortedP 0 [u] \ ccw'.sortedP x0 (map snd (polychain_of x0 [u]))" and "ccw'.sortedP 0 [] \ ccw'.sortedP x0 (map snd (polychain_of x0 []))" by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons simp: ac_simps) lemma ccw'_sortedP_polychain_of2: assumes "ccw'.sortedP 0 [u, v]" shows "ccw'.sortedP x0 (map snd (polychain_of x0 [u, v]))" using assms by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons elim!: linorder_list0.sortedP_Cons simp: ac_simps ccw'.translate_origin) lemma ccw'_sortedP_polychain_of3: assumes "ccw'.sortedP 0 (u#v#w#xs)" shows "ccw'.sortedP x0 (map snd (polychain_of x0 (u#v#w#xs)))" using assms proof (induct xs arbitrary: x0 u v w) case Nil then have *: "ccw' 0 u v" "ccw' 0 v w" "ccw' 0 u w" by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons elim!: linorder_list0.sortedP_Cons simp: ac_simps) moreover have "ccw' 0 (u + v) (u + (v + w))" by (metis add.assoc ccw'.add1 ccw'.add3_self *(2-)) ultimately show ?case by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons elim!: linorder_list0.sortedP_Cons simp: ac_simps ccw'.translate_origin ccw'.add3) next case (Cons y ys) have s1: "linorder_list0.sortedP (ccw' 0) ((u + v)#w#y#ys)" using Cons.prems by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons elim!: linorder_list0.sortedP_Cons simp: ccw'.add1) have s2: "linorder_list0.sortedP (ccw' 0) (u#(v + w)#y#ys)" using Cons.prems by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons elim!: linorder_list0.sortedP_Cons simp: ccw'.add3 ccw'.add1) have s3: "linorder_list0.sortedP (ccw' 0) (u#v#(w + y)#ys)" using Cons.prems by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons elim!: linorder_list0.sortedP_Cons simp: ccw'.add3 ccw'.add1) show ?case using Cons.hyps[OF s1, of x0] Cons.hyps[OF s2, of x0] Cons.hyps[OF s3, of x0] Cons.prems by (auto intro!: linorder_list0.sortedP.Nil linorder_list0.sortedP.Cons elim!: linorder_list0.sortedP_Cons simp: ac_simps) qed lemma ccw'_sortedP_polychain_of_snd: assumes "ccw'.sortedP 0 xs" shows "ccw'.sortedP x0 (map snd (polychain_of x0 xs))" using assms by (metis ccw'_sortedP_polychain_of01 ccw'_sortedP_polychain_of2 ccw'_sortedP_polychain_of3 list.exhaust) lemma ccw'_sortedP_implies_distinct: assumes "ccw'.sortedP x qs" shows "distinct qs" using assms proof induct case Cons thus ?case by (meson ccw'_contra distinct.simps(2)) qed simp lemma ccw'_sortedP_implies_nonaligned: assumes "ccw'.sortedP x qs" assumes "y \ set qs" "z \ set qs" "y \ z" shows "\ coll x y z" using assms by induct (force simp: ccw'_def det3_def' algebra_simps)+ lemma list_all_mp: "list_all P xs \ (\x. x \ set xs \ P x \ Q x) \ list_all Q xs" by (auto simp: list_all_iff) lemma ccw'_scale_origin: assumes "e \ UNIV \ {0<..<1}" assumes "x \ set (polychain_of Pc (P # QRRs))" assumes "ccw'.sortedP 0 (P # QRRs)" assumes "ccw' (fst x) (snd x) (P + (Pc + (\P\set QRRs. e P *\<^sub>R P)))" shows "ccw' (fst x) (snd x) (e P *\<^sub>R P + (Pc + (\P\set QRRs. e P *\<^sub>R P)))" proof - from assms(2) have "fst x = Pc \ snd x = Pc + P \ x \ set (polychain_of (Pc + P) QRRs)" by auto thus ?thesis proof assume x: "x \ set (polychain_of (Pc + P) QRRs)" define q where "q = snd x - fst x" from Polygon.in_set_polychain_of_imp_sum_list[OF x] obtain d where d: "fst x = (Pc + P + sum_list (take d QRRs))" by (auto simp: prod_eq_iff) from in_set_polychain_ofD[OF x] have q_in: "q \ set QRRs" by (simp add: q_def) define R where "R = set QRRs - {q}" hence QRRs: "set QRRs = R \ {q}" "q \ R" "finite R" using q_in by auto have "ccw' 0 q (-P)" using assms(3) by (auto simp: ccw'.sortedP_Cons_iff q_in) hence "ccw' 0 q ((1 - e P) *\<^sub>R (-P))" using assms(1) by (subst ccw'.scaleR2_eq) (auto simp: algebra_simps) moreover from assms(4) have "ccw' 0 q ((\P\set QRRs. e P *\<^sub>R P) - sum_list (take d QRRs))" by (auto simp: q_def ccw'.translate_origin d) ultimately have "ccw' 0 q ((1 - e P) *\<^sub>R (-P) + ((\P\set QRRs. e P *\<^sub>R P) - sum_list (take d QRRs)))" by (intro ccw'.add3) auto thus ?thesis by (auto simp: ccw'.translate_origin q_def algebra_simps d) qed (metis (no_types, lifting) add.left_commute assms(4) ccw'.add3_self ccw'.scale_add3 ccw'.translate) qed lemma polychain_of_ccw_convex: assumes "e \ UNIV \ {0 <..< 1}" assumes sorted: "linorder_list0.sortedP (ccw' 0) (P#Q#Ps)" shows "list_all (\(xi, xj). ccw' xi xj (Pc + (\P \ set (P#Q#Ps). e P *\<^sub>R P))) (polychain_of Pc (P#Q#Ps))" using assms(1) assms(2) proof (induct Ps arbitrary: P Q Pc) case Nil have eq: "e P *\<^sub>R P + e Q *\<^sub>R Q - P = (1 - e P) *\<^sub>R (- P) + e Q *\<^sub>R Q" using \e \ _\ by (auto simp add: algebra_simps) from Nil ccw'_sortedP_implies_distinct[OF Nil(2)] have "P \ Q" "e P < 1" "0 < e Q" "ccw' 0 P Q" by (auto elim!: linorder_list0.sortedP_Cons) thus ?case by (auto simp: ccw'_not_coll ccw'.translate_origin eq) next case (Cons R Rs) hence "ccw' 0 P Q" "P \ Q" using ccw'_sortedP_implies_distinct[OF Cons(3)] by (auto elim!: linorder_list0.sortedP_Cons) have "list_all (\(xi, xj). ccw' xi xj ((Pc + P) + (\P\set (Q # R # Rs). e P *\<^sub>R P))) (polychain_of (Pc + P) (Q # R # Rs))" using Cons(2-) by (intro Cons(1)) (auto elim: linorder_list0.sortedP_Cons) also have "polychain_of (Pc + P) (Q # R # Rs) = tl (polychain_of Pc (P # Q # R # Rs))" by simp finally have "list_all (\(xi, xj). ccw' xi xj (Pc + P + (\P\set (Q # R # Rs). e P *\<^sub>R P))) (tl (polychain_of Pc (P # Q # R # Rs)))" . moreover have "list_all (\(xi, xj). ccw' xi xj (P + (\P\set (Q # R # Rs). e P *\<^sub>R P))) (polychain_of P (Q # R # Rs))" using Cons(2-) by (intro Cons(1)) (auto elim: linorder_list0.sortedP_Cons) have "(\(xi, xj). ccw' xi xj (Pc + P + (\P\set (Q # R # Rs). e P *\<^sub>R P))) (hd (polychain_of Pc (P # Q # R # Rs)))" using ccw'_sortedP_implies_nonaligned[OF Cons(3), of P Q] ccw'_sortedP_implies_nonaligned[OF Cons(3), of Q R] ccw'_sortedP_implies_nonaligned[OF Cons(3), of P R] Cons(2,3) by (auto simp add: Pi_iff add.assoc simp del: scaleR_Pair intro!: ccw'.sum elim!: linorder_list0.sortedP_Cons) ultimately have "list_all (\(xi, xj). ccw' xi xj (P + (Pc + (\P\set (Q # R # Rs). e P *\<^sub>R P)))) (polychain_of Pc (P # Q # R # Rs))" by (simp add: ac_simps) hence "list_all (\(xi, xj). ccw' xi xj (e P *\<^sub>R P + (Pc + (\P\set (Q # R # Rs). e P *\<^sub>R P)))) (polychain_of Pc (P # Q # R # Rs))" unfolding split_beta' by (rule list_all_mp, intro ccw'_scale_origin[OF assms(1)]) (auto intro!: ccw'_scale_origin Cons(3)) thus ?case using ccw'_sortedP_implies_distinct[OF Cons(3)] Cons by (simp add: ac_simps) qed lemma polychain_of_ccw: assumes "e \ UNIV \ {0 <..< 1}" assumes sorted: "ccw'.sortedP 0 qs" assumes qs: "length qs \ 1" shows "list_all (\(xi, xj). ccw' xi xj (Pc + (\P \ set qs. e P *\<^sub>R P))) (polychain_of Pc qs)" using assms proof (cases qs) case (Cons Q Qs) note CQ = this show ?thesis using assms proof (cases Qs) case (Cons R Rs) thus ?thesis using assms unfolding CQ Cons by (intro polychain_of_ccw_convex) (auto simp: CQ Cons intro!: polychain_of_ccw_convex) qed (auto simp: CQ) qed simp lemma in_polychain_of_ccw: assumes "e \ UNIV \ {0 <..< 1}" assumes "ccw'.sortedP 0 qs" assumes "length qs \ 1" assumes "seg \ set (polychain_of Pc qs)" shows "ccw' (fst seg) (snd seg) (Pc + (\P \ set qs. e P *\<^sub>R P))" using polychain_of_ccw[OF assms(1,2,3)] assms(4) by (simp add: list_all_iff split_beta) lemma distinct_butlast_ne_last: "distinct xs \ x \ set (butlast xs) \ x \ last xs" by (metis append_butlast_last_id distinct_butlast empty_iff in_set_butlastD list.set(1) not_distinct_conv_prefix) lemma ccw'_sortedP_convex_rotate_aux: assumes "ccw'.sortedP 0 (zs)" "ccw'.sortedP x (map snd (polychain_of x (zs)))" shows "ccw'.sortedP (snd (last (polychain_of x (zs)))) (map snd (butlast (polychain_of x (zs))))" using assms proof (induct zs arbitrary: x rule: list.induct) case (Cons z zs) { assume "zs \ []" have "ccw'.sortedP (snd (last (polychain_of (x + z) zs))) (map snd (butlast (polychain_of (x + z) zs)))" using Cons.prems by (auto elim!: ccw'.sortedP_Cons intro!: ccw'_sortedP_polychain_of_snd Cons.hyps) from _ this have "linorder_list0.sortedP (ccw' (snd (last (polychain_of (x + z) zs)))) ((x + z) # map snd (butlast (polychain_of (x + z) zs)))" proof (rule ccw'.sortedP.Cons, safe) fix c d assume cd: "(c, d) \ set (map snd (butlast (polychain_of (x + z) zs)))" then obtain a b where ab: "((a, b), c, d) \ set (butlast (polychain_of (x + z) zs))" by auto have cd': "(c, d) \ set (butlast (map snd (polychain_of (x + z) zs)))" using cd by (auto simp: map_butlast) have "ccw' (x + z) (c, d) (last (map snd (polychain_of (x + z) zs)))" proof (rule ccw'.sortedP_right_of_last) show "ccw'.sortedP (x + z) (map snd (polychain_of (x + z) zs))" using Cons by (force intro!: ccw'.sortedP.Cons ccw'.sortedP.Nil ccw'_sortedP_polychain_of_snd elim!: ccw'.sortedP_Cons) show "(c, d) \ set (map snd (polychain_of (x + z) zs))" using in_set_butlastD[OF ab] by force from Cons(3) cd' show "(c, d) \ last (map snd (polychain_of (x + z) zs))" by (intro distinct_butlast_ne_last ccw'_sortedP_implies_distinct[where x=x]) (auto elim!: ccw'.sortedP_Cons) qed thus "ccw' (snd (last (polychain_of (x + z) zs))) (x + z) (c, d)" by (auto simp: last_map[symmetric, where f= snd] \zs \ []\ intro: ccw'.cyclicI) qed } thus ?case by (auto simp: ccw'.sortedP.Nil) qed (simp add: ccw'.sortedP.Nil) lemma ccw'_polychain_of_sorted_center_last: assumes set_butlast: "(c, d) \ set (butlast (polychain_of x0 xs))" assumes sorted: "ccw'.sortedP 0 xs" assumes ne: "xs \ []" shows "ccw' x0 d (snd (last (polychain_of x0 xs)))" proof - from ccw'_sortedP_polychain_of_snd[OF sorted, of x0] have "ccw'.sortedP x0 (map snd (polychain_of x0 xs))" . also from set_butlast obtain ys zs where "butlast (polychain_of x0 xs) = ys@((c, d)#zs)" by (auto simp add: in_set_conv_decomp) hence "polychain_of x0 xs = ys @ (c, d) # zs @ [last (polychain_of x0 xs)]" by (metis append_Cons append_assoc append_butlast_last_id ne polychain_of_eq_empty_iff) finally show ?thesis by (auto elim!: ccw'.sortedP_Cons simp: ccw'.sortedP_append_iff) qed end