(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq path. From mathcomp Require Import fintype div bigop. (******************************************************************************) (* This file contains the definitions of: *) (* prime p <=> p is a prime. *) (* primes m == the sorted list of prime divisors of m > 1, else [::]. *) (* pfactor p e == the value p ^ e of a prime factor (p, e). *) (* NumFactor f == print version of a prime factor, converting the prime *) (* component to a Num (which can print large values). *) (* prime_decomp m == the list of prime factors of m > 1, sorted by primes. *) (* logn p m == the e such that (p ^ e) \in prime_decomp n, else 0. *) (* trunc_log p m == the largest e such that p ^ e <= m, or 0 if p <= 1 or *) (* m is 0. *) (* up_log p m == the smallest e such that m <= p ^ e, or 0 if p <= 1 *) (* pdiv n == the smallest prime divisor of n > 1, else 1. *) (* max_pdiv n == the largest prime divisor of n > 1, else 1. *) (* divisors m == the sorted list of divisors of m > 0, else [::]. *) (* totient n == the Euler totient (#|{i < n | i and n coprime}|). *) (* nat_pred == the type of explicit collective nat predicates. *) (* := simpl_pred nat. *) (* -> We allow the coercion nat >-> nat_pred, interpreting p as pred1 p. *) (* -> We define a predType for nat_pred, enabling the notation p \in pi. *) (* -> We don't have nat_pred >-> pred, which would imply nat >-> Funclass. *) (* pi^' == the complement of pi : nat_pred, i.e., the nat_pred such *) (* that (p \in pi^') = (p \notin pi). *) (* \pi(n) == the set of prime divisors of n, i.e., the nat_pred such *) (* that (p \in \pi(n)) = (p \in primes n). *) (* \pi(A) == the set of primes of #|A|, with A a collective predicate *) (* over a finite Type. *) (* -> The notation \pi(A) is implemented with a collapsible Coercion. The *) (* type of A must coerce to finpred_sort (e.g., by coercing to {set T}) *) (* and not merely implement the predType interface (as seq T does). *) (* -> The expression #|A| will only appear in \pi(A) after simplification *) (* collapses the coercion, so it is advisable to do so early on. *) (* pi.-nat n <=> n > 0 and all prime divisors of n are in pi. *) (* n`_pi == the pi-part of n -- the largest pi.-nat divisor of n. *) (* := \prod_(0 <= p < n.+1 | p \in pi) p ^ logn p n. *) (* -> The nat >-> nat_pred coercion lets us write p.-nat n and n`_p. *) (* In addition to the lemmas relevant to these definitions, this file also *) (* contains the dvdn_sum lemma, so that bigop.v doesn't depend on div.v. *) (******************************************************************************) Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. (* The complexity of any arithmetic operation with the Peano representation *) (* is pretty dreadful, so using algorithms for "harder" problems such as *) (* factoring, that are geared for efficient arithmetic leads to dismal *) (* performance -- it takes a significant time, for instance, to compute the *) (* divisors of just a two-digit number. On the other hand, for Peano *) (* integers, prime factoring (and testing) is linear-time with a small *) (* constant factor -- indeed, the same as converting in and out of a binary *) (* representation. This is implemented by the code below, which is then *) (* used to give the "standard" definitions of prime, primes, and divisors, *) (* which can then be used casually in proofs with moderately-sized numeric *) (* values (indeed, the code here performs well for up to 6-digit numbers). *) Module Import PrimeDecompAux. (* We start with faster mod-2 and 2-valuation functions. *) Fixpoint edivn2 q r := if r is r'.+2 then edivn2 q.+1 r' else (q, r). Lemma edivn2P n : edivn_spec n 2 (edivn2 0 n). Proof. rewrite -[n]odd_double_half addnC -{1}[n./2]addn0 -{1}mul2n mulnC. elim: n./2 {1 4}0 => [|r IHr] q; first by case (odd n) => /=. by rewrite addSnnS; apply: IHr. Qed. Fixpoint elogn2 e q r {struct q} := match q, r with | 0, _ | _, 0 => (e, q) | q'.+1, 1 => elogn2 e.+1 q' q' | q'.+1, r'.+2 => elogn2 e q' r' end. Arguments elogn2 : simpl nomatch. Variant elogn2_spec n : nat * nat -> Type := Elogn2Spec e m of n = 2 ^ e * m.*2.+1 : elogn2_spec n (e, m). Lemma elogn2P n : elogn2_spec n.+1 (elogn2 0 n n). Proof. rewrite -[n.+1]mul1n -[1]/(2 ^ 0) -[n in _ * n.+1](addKn n n) addnn. elim: n {1 4 6}n {2 3}0 (leqnn n) => [|q IHq] [|[|r]] e //=; last first. by move/ltnW; apply: IHq. rewrite subn1 prednK // -mul2n mulnA -expnSr. by rewrite -[q in _ * q.+1](addKn q q) addnn => _; apply: IHq. Qed. Definition ifnz T n (x y : T) := if n is 0 then y else x. Variant ifnz_spec T n (x y : T) : T -> Type := | IfnzPos of n > 0 : ifnz_spec n x y x | IfnzZero of n = 0 : ifnz_spec n x y y. Lemma ifnzP T n (x y : T) : ifnz_spec n x y (ifnz n x y). Proof. by case: n => [|n]; [right | left]. Qed. (* The list of divisors and the Euler function are computed directly from *) (* the decomposition, using a merge_sort variant sort of the divisor list. *) Definition add_divisors f divs := let: (p, e) := f in let add1 divs' := merge leq (map (NatTrec.mul p) divs') divs in iter e add1 divs. Import NatTrec. Definition add_totient_factor f m := let: (p, e) := f in p.-1 * p ^ e.-1 * m. Definition cons_pfactor (p e : nat) pd := ifnz e ((p, e) :: pd) pd. Notation "p ^? e :: pd" := (cons_pfactor p e pd) (at level 30, e at level 30, pd at level 60) : nat_scope. End PrimeDecompAux. (* For pretty-printing. *) Definition NumFactor (f : nat * nat) := ([Num of f.1], f.2). Definition pfactor p e := p ^ e. Section prime_decomp. Import NatTrec. Local Fixpoint prime_decomp_rec m k a b c e := let p := k.*2.+1 in if a is a'.+1 then if b - (ifnz e 1 k - c) is b'.+1 then [rec m, k, a', b', ifnz c c.-1 (ifnz e p.-2 1), e] else if (b == 0) && (c == 0) then let b' := k + a' in [rec b'.*2.+3, k, a', b', k.-1, e.+1] else let bc' := ifnz e (ifnz b (k, 0) (edivn2 0 c)) (b, c) in p ^? e :: ifnz a' [rec m, k.+1, a'.-1, bc'.1 + a', bc'.2, 0] [:: (m, 1)] else if (b == 0) && (c == 0) then [:: (p, e.+2)] else p ^? e :: [:: (m, 1)] where "[ 'rec' m , k , a , b , c , e ]" := (prime_decomp_rec m k a b c e). Definition prime_decomp n := let: (e2, m2) := elogn2 0 n.-1 n.-1 in if m2 < 2 then 2 ^? e2 :: 3 ^? m2 :: [::] else let: (a, bc) := edivn m2.-2 3 in let: (b, c) := edivn (2 - bc) 2 in 2 ^? e2 :: [rec m2.*2.+1, 1, a, b, c, 0]. End prime_decomp. Definition primes n := unzip1 (prime_decomp n). Definition prime p := if prime_decomp p is [:: (_ , 1)] then true else false. Definition nat_pred := simpl_pred nat. Definition pi_arg := nat. Coercion pi_arg_of_nat (n : nat) : pi_arg := n. Coercion pi_arg_of_fin_pred T pT (A : @fin_pred_sort T pT) : pi_arg := #|A|. Arguments pi_arg_of_nat n /. Arguments pi_arg_of_fin_pred {T pT} A /. Definition pi_of (n : pi_arg) : nat_pred := [pred p in primes n]. Notation "\pi ( n )" := (pi_of n) (at level 2, format "\pi ( n )") : nat_scope. Notation "\p 'i' ( A )" := \pi(#|A|) (at level 2, format "\p 'i' ( A )") : nat_scope. Definition pdiv n := head 1 (primes n). Definition max_pdiv n := last 1 (primes n). Definition divisors n := foldr add_divisors [:: 1] (prime_decomp n). Definition totient n := foldr add_totient_factor (n > 0) (prime_decomp n). (* Correctness of the decomposition algorithm. *) Lemma prime_decomp_correct : let pd_val pd := \prod_(f <- pd) pfactor f.1 f.2 in let lb_dvd q m := ~~ has [pred d | d %| m] (index_iota 2 q) in let pf_ok f := lb_dvd f.1 f.1 && (0 < f.2) in let pd_ord q pd := path ltn q (unzip1 pd) in let pd_ok q n pd := [/\ n = pd_val pd, all pf_ok pd & pd_ord q pd] in forall n, n > 0 -> pd_ok 1 n (prime_decomp n). Proof. rewrite unlock => pd_val lb_dvd pf_ok pd_ord pd_ok. have leq_pd_ok m p q pd: q <= p -> pd_ok p m pd -> pd_ok q m pd. rewrite /pd_ok /pd_ord; case: pd => [|[r _] pd] //= leqp [<- ->]. by case/andP=> /(leq_trans _)->. have apd_ok m e q p pd: lb_dvd p p || (e == 0) -> q < p -> pd_ok p m pd -> pd_ok q (p ^ e * m) (p ^? e :: pd). - case: e => [|e]; rewrite orbC /= => pr_p ltqp. by rewrite mul1n; apply: leq_pd_ok; apply: ltnW. by rewrite /pd_ok /pd_ord /pf_ok /= pr_p ltqp => [[<- -> ->]]. case=> // n _; rewrite /prime_decomp. case: elogn2P => e2 m2 -> {n}; case: m2 => [|[|abc]]; try exact: apd_ok. rewrite [_.-2]/= !ltnS ltn0 natTrecE; case: edivnP => a bc ->{abc}. case: edivnP => b c def_bc /= ltc2 ltbc3; apply: (apd_ok) => //. move def_m: _.*2.+1 => m; set k := {2}1; rewrite -[2]/k.*2; set e := 0. pose p := k.*2.+1; rewrite -{1}[m]mul1n -[1]/(p ^ e)%N. have{def_m bc def_bc ltc2 ltbc3}: let kb := (ifnz e k 1).*2 in [&& k > 0, p < m, lb_dvd p m, c < kb & lb_dvd p p || (e == 0)] /\ m + (b * kb + c).*2 = p ^ 2 + (a * p).*2. - rewrite -def_m [in lb_dvd _ _]def_m; split=> //=; last first. by rewrite -def_bc addSn -doubleD 2!addSn -addnA subnKC // addnC. rewrite ltc2 /lb_dvd /index_iota /= dvdn2 -def_m. by rewrite [_.+2]lock /= odd_double. have [n] := ubnP a. elim: n => // n IHn in a (k) p m b c (e) * => /ltnSE-le_a_n []. set kb := _.*2; set d := _ + c => /and5P[lt0k ltpm leppm ltc pr_p def_m]. have def_k1: k.-1.+1 = k := ltn_predK lt0k. have def_kb1: kb.-1.+1 = kb by rewrite /kb -def_k1; case e. have eq_bc_0: (b == 0) && (c == 0) = (d == 0). by rewrite addn_eq0 muln_eq0 orbC -def_kb1. have lt1p: 1 < p by rewrite ltnS double_gt0. have co_p_2: coprime p 2 by rewrite /coprime gcdnC gcdnE modn2 /= odd_double. have if_d0: d = 0 -> [/\ m = (p + a.*2) * p, lb_dvd p p & lb_dvd p (p + a.*2)]. move=> d0; have{d0} def_m: m = (p + a.*2) * p. by rewrite d0 addn0 -!mul2n mulnA -mulnDl in def_m *. split=> //; apply/hasPn=> r /(hasPn leppm); apply: contra => /= dv_r. by rewrite def_m dvdn_mull. by rewrite def_m dvdn_mulr. case def_a: a => [|a'] /= in le_a_n *; rewrite !natTrecE -/p {}eq_bc_0. case: d if_d0 def_m => [[//| def_m {}pr_p pr_m'] _ | d _ def_m] /=. rewrite def_m def_a addn0 mulnA -2!expnSr. by split; rewrite /pd_ord /pf_ok /= ?muln1 ?pr_p ?leqnn. apply: apd_ok; rewrite // /pd_ok /= /pfactor expn1 muln1 /pd_ord /= ltpm. rewrite /pf_ok !andbT /=; split=> //; apply: contra leppm. case/hasP=> r /=; rewrite mem_index_iota => /andP[lt1r ltrm] dvrm; apply/hasP. have [ltrp | lepr] := ltnP r p. by exists r; rewrite // mem_index_iota lt1r. case/dvdnP: dvrm => q def_q; exists q; last by rewrite def_q /= dvdn_mulr. rewrite mem_index_iota -(ltn_pmul2r (ltnW lt1r)) -def_q mul1n ltrm. move: def_m; rewrite def_a addn0 -(@ltn_pmul2r p) // mulnn => <-. apply: (@leq_ltn_trans m); first by rewrite def_q leq_mul. by rewrite -addn1 leq_add2l. have def_k2: k.*2 = ifnz e 1 k * kb. by rewrite /kb; case: (e) => [|e']; rewrite (mul1n, muln2). case def_b': (b - _) => [|b']; last first. have ->: ifnz e k.*2.-1 1 = kb.-1 by rewrite /kb; case e. apply: IHn => {n le_a_n}//; rewrite -/p -/kb; split=> //. rewrite lt0k ltpm leppm pr_p andbT /=. by case: ifnzP; [move/ltn_predK->; apply: ltnW | rewrite def_kb1]. apply: (@addIn p.*2). rewrite -2!addnA -!doubleD -addnA -mulSnr -def_a -def_m /d. have ->: b * kb = b' * kb + (k.*2 - c * kb + kb). rewrite addnCA addnC -mulSnr -def_b' def_k2 -mulnBl -mulnDl subnK //. by rewrite ltnW // -subn_gt0 def_b'. rewrite -addnA; congr (_ + (_ + _).*2). case: (c) ltc; first by rewrite -addSnnS def_kb1 subn0 addn0 addnC. rewrite /kb; case e => [[] // _ | e' c' _] /=; last first. by rewrite subnDA subnn addnC addSnnS. by rewrite mul1n -doubleB -doubleD subn1 !addn1 def_k1. have ltdp: d < p. move/eqP: def_b'; rewrite subn_eq0 -(@leq_pmul2r kb); last first. by rewrite -def_kb1. rewrite mulnBl -def_k2 ltnS -(leq_add2r c); move/leq_trans; apply. have{} ltc: c < k.*2. by apply: (leq_trans ltc); rewrite leq_double /kb; case e. rewrite -{2}(subnK (ltnW ltc)) leq_add2r leq_sub2l //. by rewrite -def_kb1 mulnS leq_addr. case def_d: d if_d0 => [|d'] => [[//|{ltdp pr_p}def_m pr_p pr_m'] | _]. rewrite eqxx -doubleS -addnS -def_a doubleD -addSn -/p def_m. rewrite mulnCA mulnC -expnSr. apply: IHn => {n le_a_n}//; rewrite -/p -/kb; split. rewrite lt0k -addn1 leq_add2l {1}def_a pr_m' pr_p /= def_k1 -addnn. by rewrite leq_addr. rewrite -addnA -doubleD addnCA def_a addSnnS def_k1 -(addnC k) -mulnSr. by rewrite -[_.*2.+1]/p mulnDl doubleD addnA -mul2n mulnA mul2n -mulSn. have next_pm: lb_dvd p.+2 m. rewrite /lb_dvd /index_iota (addKn 2) -(subnK lt1p) iotaD has_cat. apply/norP; split; rewrite //= orbF subnKC // orbC. apply/norP; split; apply/dvdnP=> [[q def_q]]. case/hasP: leppm; exists 2; first by rewrite /p -(subnKC lt0k). by rewrite /= def_q dvdn_mull // dvdn2 /= odd_double. move/(congr1 (dvdn p)): def_m; rewrite -!mul2n mulnA -mulnDl. rewrite dvdn_mull // dvdn_addr; last by rewrite def_q dvdn_mull. case/dvdnP=> r; rewrite mul2n => def_r; move: ltdp (congr1 odd def_r). rewrite odd_double -ltn_double def_r -mul2n ltn_pmul2r //. by case: r def_r => [|[|[]]] //; rewrite def_d // mul1n /= odd_double. apply: apd_ok => //; case: a' def_a le_a_n => [|a'] def_a => [_ | lta] /=. rewrite /pd_ok /= /pfactor expn1 muln1 /pd_ord /= ltpm /pf_ok !andbT /=. split=> //; apply: contra next_pm. case/hasP=> q; rewrite mem_index_iota => /andP[lt1q ltqm] dvqm; apply/hasP. have [ltqp | lepq] := ltnP q p.+2. by exists q; rewrite // mem_index_iota lt1q. case/dvdnP: dvqm => r def_r; exists r; last by rewrite def_r /= dvdn_mulr. rewrite mem_index_iota -(ltn_pmul2r (ltnW lt1q)) -def_r mul1n ltqm /=. rewrite -(@ltn_pmul2l p.+2) //; apply: (@leq_ltn_trans m). by rewrite def_r mulnC leq_mul. rewrite -addn2 mulnn sqrnD mul2n muln2 -addnn addnACA. by rewrite def_a mul1n in def_m; rewrite -def_m addnS /= ltnS -addnA leq_addr. set bc := ifnz _ _ _; apply: leq_pd_ok (leqnSn _) _. rewrite -doubleS -{1}[m]mul1n -[1]/(k.+1.*2.+1 ^ 0)%N. apply: IHn; first exact: ltnW. rewrite doubleS -/p [ifnz 0 _ _]/=; do 2?split => //. rewrite orbT next_pm /= -(leq_add2r d.*2) def_m 2!addSnnS -doubleS leq_add. - move: ltc; rewrite /kb {}/bc andbT; case e => //= e' _; case: ifnzP => //. by case: edivn2P. - by rewrite -[ltnLHS]muln1 ltn_pmul2l. by rewrite leq_double def_a mulSn (leq_trans ltdp) ?leq_addr. rewrite mulnDl !muln2 -addnA addnCA doubleD addnCA. rewrite (_ : _ + bc.2 = d); last first. rewrite /d {}/bc /kb -muln2. case: (e) (b) def_b' => //= _ []; first by case: edivn2P. by case c; do 2?case; rewrite // mul1n /= muln2. rewrite def_m 3!doubleS addnC -(addn2 p) sqrnD mul2n muln2 -3!addnA. congr (_ + _); rewrite 4!addnS -!doubleD; congr _.*2.+2.+2. by rewrite def_a -add2n mulnDl -addnA -muln2 -mulnDr mul2n. Qed. Lemma primePn n : reflect (n < 2 \/ exists2 d, 1 < d < n & d %| n) (~~ prime n). Proof. rewrite /prime; case: n => [|[|p2]]; try by do 2!left. case: (@prime_decomp_correct p2.+2) => //; rewrite unlock. case: prime_decomp => [|[q [|[|e]]] pd] //=; last first; last by rewrite andbF. rewrite {1}/pfactor 2!expnS -!mulnA /=. case: (_ ^ _ * _) => [|u -> _ /andP[lt1q _]]; first by rewrite !muln0. left; right; exists q; last by rewrite dvdn_mulr. have lt0q := ltnW lt1q; rewrite lt1q -[ltnLHS]muln1 ltn_pmul2l //. by rewrite -[2]muln1 leq_mul. rewrite {1}/pfactor expn1; case: pd => [|[r e] pd] /=; last first. case: e => [|e] /=; first by rewrite !andbF. rewrite {1}/pfactor expnS -mulnA. case: (_ ^ _ * _) => [|u -> _ /and3P[lt1q ltqr _]]; first by rewrite !muln0. left; right; exists q; last by rewrite dvdn_mulr. by rewrite lt1q -[ltnLHS]mul1n ltn_mul // -[q.+1]muln1 leq_mul. rewrite muln1 !andbT => def_q pr_q lt1q; right=> [[]] // [d]. by rewrite def_q -mem_index_iota => in_d_2q dv_d_q; case/hasP: pr_q; exists d. Qed. Lemma primeP p : reflect (p > 1 /\ forall d, d %| p -> xpred2 1 p d) (prime p). Proof. rewrite -[prime p]negbK; have [npr_p | pr_p] := primePn p. right=> [[lt1p pr_p]]; case: npr_p => [|[d n1pd]]. by rewrite ltnNge lt1p. by move/pr_p=> /orP[] /eqP def_d; rewrite def_d ltnn ?andbF in n1pd. have [lep1 | lt1p] := leqP; first by case: pr_p; left. left; split=> // d dv_d_p; apply/norP=> [[nd1 ndp]]; case: pr_p; right. exists d; rewrite // andbC 2!ltn_neqAle ndp eq_sym nd1. by have lt0p := ltnW lt1p; rewrite dvdn_leq // (dvdn_gt0 lt0p). Qed. Lemma prime_nt_dvdP d p : prime p -> d != 1 -> reflect (d = p) (d %| p). Proof. case/primeP=> _ min_p d_neq1; apply: (iffP idP) => [/min_p|-> //]. by rewrite (negPf d_neq1) /= => /eqP. Qed. Arguments primeP {p}. Arguments primePn {n}. Lemma prime_gt1 p : prime p -> 1 < p. Proof. by case/primeP. Qed. Lemma prime_gt0 p : prime p -> 0 < p. Proof. by move/prime_gt1; apply: ltnW. Qed. #[global] Hint Resolve prime_gt1 prime_gt0 : core. Lemma prod_prime_decomp n : n > 0 -> n = \prod_(f <- prime_decomp n) f.1 ^ f.2. Proof. by case/prime_decomp_correct. Qed. Lemma even_prime p : prime p -> p = 2 \/ odd p. Proof. move=> pr_p; case odd_p: (odd p); [by right | left]. have: 2 %| p by rewrite dvdn2 odd_p. by case/primeP: pr_p => _ dv_p /dv_p/(2 =P p). Qed. Lemma prime_oddPn p : prime p -> reflect (p = 2) (~~ odd p). Proof. by move=> p_pr; apply: (iffP idP) => [|-> //]; case/even_prime: p_pr => ->. Qed. Lemma odd_prime_gt2 p : odd p -> prime p -> p > 2. Proof. by move=> odd_p /prime_gt1; apply: odd_gt2. Qed. Lemma mem_prime_decomp n p e : (p, e) \in prime_decomp n -> [/\ prime p, e > 0 & p ^ e %| n]. Proof. case: (posnP n) => [-> //| /prime_decomp_correct[def_n mem_pd ord_pd pd_pe]]. have /andP[pr_p ->] := allP mem_pd _ pd_pe; split=> //; last first. case/splitPr: pd_pe def_n => pd1 pd2 ->. by rewrite big_cat big_cons /= mulnCA dvdn_mulr. have lt1p: 1 < p. apply: (allP (order_path_min ltn_trans ord_pd)). by apply/mapP; exists (p, e). apply/primeP; split=> // d dv_d_p; apply/norP=> [[nd1 ndp]]. case/hasP: pr_p; exists d => //. rewrite mem_index_iota andbC 2!ltn_neqAle ndp eq_sym nd1. by have lt0p := ltnW lt1p; rewrite dvdn_leq // (dvdn_gt0 lt0p). Qed. Lemma prime_coprime p m : prime p -> coprime p m = ~~ (p %| m). Proof. case/primeP=> p_gt1 p_pr; apply/eqP/negP=> [d1 | ndv_pm]. case/dvdnP=> k def_m; rewrite -(addn0 m) def_m gcdnMDl gcdn0 in d1. by rewrite d1 in p_gt1. by apply: gcdn_def => // d /p_pr /orP[] /eqP->. Qed. Lemma dvdn_prime2 p q : prime p -> prime q -> (p %| q) = (p == q). Proof. move=> pr_p pr_q; apply: negb_inj. by rewrite eqn_dvd negb_and -!prime_coprime // coprime_sym orbb. Qed. Lemma Euclid_dvd1 p : prime p -> (p %| 1) = false. Proof. by rewrite dvdn1; case: eqP => // ->. Qed. Lemma Euclid_dvdM m n p : prime p -> (p %| m * n) = (p %| m) || (p %| n). Proof. move=> pr_p; case dv_pm: (p %| m); first exact: dvdn_mulr. by rewrite Gauss_dvdr // prime_coprime // dv_pm. Qed. Lemma Euclid_dvd_prod (I : Type) (r : seq I) (P : pred I) (f : I -> nat) p : prime p -> p %| \prod_(i <- r | P i) f i = \big[orb/false]_(i <- r | P i) (p %| f i). Proof. move=> pP; apply: big_morph=> [x y|]; [exact: Euclid_dvdM | exact: Euclid_dvd1]. Qed. Lemma Euclid_dvdX m n p : prime p -> (p %| m ^ n) = (p %| m) && (n > 0). Proof. case: n => [|n] pr_p; first by rewrite andbF Euclid_dvd1. by apply: (inv_inj negbK); rewrite !andbT -!prime_coprime // coprime_pexpr. Qed. Lemma mem_primes p n : (p \in primes n) = [&& prime p, n > 0 & p %| n]. Proof. rewrite andbCA; have [-> // | /= n_gt0] := posnP. apply/mapP/andP=> [[[q e]]|[pr_p]] /=. case/mem_prime_decomp=> pr_q e_gt0 /dvdnP [u ->] -> {p}. by rewrite -(prednK e_gt0) expnS mulnCA dvdn_mulr. rewrite [n in _ %| n]prod_prime_decomp // big_seq. apply big_ind => [| u v IHu IHv | [q e] /= mem_qe dv_p_qe]. - by rewrite Euclid_dvd1. - by rewrite Euclid_dvdM // => /orP[]. exists (q, e) => //=; case/mem_prime_decomp: mem_qe => pr_q _ _. by rewrite Euclid_dvdX // dvdn_prime2 // in dv_p_qe; case: eqP dv_p_qe. Qed. Lemma sorted_primes n : sorted ltn (primes n). Proof. by case: (posnP n) => [-> // | /prime_decomp_correct[_ _]]; apply: path_sorted. Qed. Lemma eq_primes m n : (primes m =i primes n) <-> (primes m = primes n). Proof. split=> [eqpr| -> //]. by apply: (irr_sorted_eq ltn_trans ltnn); rewrite ?sorted_primes. Qed. Lemma primes_uniq n : uniq (primes n). Proof. exact: (sorted_uniq ltn_trans ltnn (sorted_primes n)). Qed. (* The smallest prime divisor *) Lemma pi_pdiv n : (pdiv n \in \pi(n)) = (n > 1). Proof. case: n => [|[|n]] //; rewrite /pdiv !inE /primes. have:= prod_prime_decomp (ltn0Sn n.+1); rewrite unlock. by case: prime_decomp => //= pf pd _; rewrite mem_head. Qed. Lemma pdiv_prime n : 1 < n -> prime (pdiv n). Proof. by rewrite -pi_pdiv mem_primes; case/and3P. Qed. Lemma pdiv_dvd n : pdiv n %| n. Proof. by case: n (pi_pdiv n) => [|[|n]] //; rewrite mem_primes=> /and3P[]. Qed. Lemma pi_max_pdiv n : (max_pdiv n \in \pi(n)) = (n > 1). Proof. rewrite !inE -pi_pdiv /max_pdiv /pdiv !inE. by case: (primes n) => //= p ps; rewrite mem_head mem_last. Qed. Lemma max_pdiv_prime n : n > 1 -> prime (max_pdiv n). Proof. by rewrite -pi_max_pdiv mem_primes => /andP[]. Qed. Lemma max_pdiv_dvd n : max_pdiv n %| n. Proof. by case: n (pi_max_pdiv n) => [|[|n]] //; rewrite mem_primes => /andP[]. Qed. Lemma pdiv_leq n : 0 < n -> pdiv n <= n. Proof. by move=> n_gt0; rewrite dvdn_leq // pdiv_dvd. Qed. Lemma max_pdiv_leq n : 0 < n -> max_pdiv n <= n. Proof. by move=> n_gt0; rewrite dvdn_leq // max_pdiv_dvd. Qed. Lemma pdiv_gt0 n : 0 < pdiv n. Proof. by case: n => [|[|n]] //; rewrite prime_gt0 ?pdiv_prime. Qed. Lemma max_pdiv_gt0 n : 0 < max_pdiv n. Proof. by case: n => [|[|n]] //; rewrite prime_gt0 ?max_pdiv_prime. Qed. #[global] Hint Resolve pdiv_gt0 max_pdiv_gt0 : core. Lemma pdiv_min_dvd m d : 1 < d -> d %| m -> pdiv m <= d. Proof. case: (posnP m) => [->|mpos] lt1d dv_d_m; first exact: ltnW. rewrite /pdiv; apply: leq_trans (pdiv_leq (ltnW lt1d)). have: pdiv d \in primes m. by rewrite mem_primes mpos pdiv_prime // (dvdn_trans (pdiv_dvd d)). case: (primes m) (sorted_primes m) => //= p pm ord_pm; rewrite inE. by case/predU1P => [-> | /(allP (order_path_min ltn_trans ord_pm)) /ltnW]. Qed. Lemma max_pdiv_max n p : p \in \pi(n) -> p <= max_pdiv n. Proof. rewrite /max_pdiv !inE => n_p. case/splitPr: n_p (sorted_primes n) => p1 p2; rewrite last_cat -cat_rcons /=. rewrite headI /= cat_path -(last_cons 0) -headI last_rcons; case/andP=> _. move/(order_path_min ltn_trans); case/lastP: p2 => //= p2 q. by rewrite all_rcons last_rcons ltn_neqAle -andbA => /and3P[]. Qed. Lemma ltn_pdiv2_prime n : 0 < n -> n < pdiv n ^ 2 -> prime n. Proof. case def_n: n => [|[|n']] // _; rewrite -def_n => lt_n_p2. suffices ->: n = pdiv n by rewrite pdiv_prime ?def_n. apply/eqP; rewrite eqn_leq leqNgt andbC pdiv_leq; last by rewrite def_n. apply/contraL: lt_n_p2 => lt_pm_m; case/dvdnP: (pdiv_dvd n) => q def_q. rewrite -leqNgt [leqRHS]def_q leq_pmul2r // pdiv_min_dvd //. by rewrite -[pdiv n]mul1n [ltnRHS]def_q ltn_pmul2r in lt_pm_m. by rewrite def_q dvdn_mulr. Qed. Lemma primePns n : reflect (n < 2 \/ exists p, [/\ prime p, p ^ 2 <= n & p %| n]) (~~ prime n). Proof. apply: (iffP idP) => [npr_p|]; last first. case=> [|[p [pr_p le_p2_n dv_p_n]]]; first by case: n => [|[]]. apply/negP=> pr_n; move: dv_p_n le_p2_n; rewrite dvdn_prime2 //; move/eqP->. by rewrite leqNgt -[ltnLHS]muln1 ltn_pmul2l ?prime_gt1 ?prime_gt0. have [lt1p|] := leqP; [right | by left]. exists (pdiv n); rewrite pdiv_dvd pdiv_prime //; split=> //. by case: leqP npr_p => // /ltn_pdiv2_prime -> //; exact: ltnW. Qed. Arguments primePns {n}. Lemma pdivP n : n > 1 -> {p | prime p & p %| n}. Proof. by move=> lt1n; exists (pdiv n); rewrite ?pdiv_dvd ?pdiv_prime. Qed. Lemma primesM m n p : m > 0 -> n > 0 -> (p \in primes (m * n)) = (p \in primes m) || (p \in primes n). Proof. move=> m_gt0 n_gt0; rewrite !mem_primes muln_gt0 m_gt0 n_gt0. by case pr_p: (prime p); rewrite // Euclid_dvdM. Qed. Lemma primesX m n : n > 0 -> primes (m ^ n) = primes m. Proof. case: n => // n _; rewrite expnS; have [-> // | m_gt0] := posnP m. apply/eq_primes => /= p; elim: n => [|n IHn]; first by rewrite muln1. by rewrite primesM ?(expn_gt0, expnS, IHn, orbb, m_gt0). Qed. Lemma primes_prime p : prime p -> primes p = [::p]. Proof. move=> pr_p; apply: (irr_sorted_eq ltn_trans ltnn) => // [|q]. exact: sorted_primes. rewrite mem_seq1 mem_primes prime_gt0 //=. by apply/andP/idP=> [[pr_q q_p] | /eqP-> //]; rewrite -dvdn_prime2. Qed. Lemma coprime_has_primes m n : 0 < m -> 0 < n -> coprime m n = ~~ has (mem (primes m)) (primes n). Proof. move=> m_gt0 n_gt0; apply/eqP/hasPn=> [mn1 p | no_p_mn]. rewrite /= !mem_primes m_gt0 n_gt0 /= => /andP[pr_p p_n]. have:= prime_gt1 pr_p; rewrite pr_p ltnNge -mn1 /=; apply: contra => p_m. by rewrite dvdn_leq ?gcdn_gt0 ?m_gt0 // dvdn_gcd ?p_m. apply/eqP; rewrite eqn_leq gcdn_gt0 m_gt0 andbT leqNgt; apply/negP. move/pdiv_prime; set p := pdiv _ => pr_p. move/implyP: (no_p_mn p); rewrite /= !mem_primes m_gt0 n_gt0 pr_p /=. by rewrite !(dvdn_trans (pdiv_dvd _)) // (dvdn_gcdl, dvdn_gcdr). Qed. Lemma pdiv_id p : prime p -> pdiv p = p. Proof. by move=> p_pr; rewrite /pdiv primes_prime. Qed. Lemma pdiv_pfactor p k : prime p -> pdiv (p ^ k.+1) = p. Proof. by move=> p_pr; rewrite /pdiv primesX ?primes_prime. Qed. (* Primes are unbounded. *) Lemma prime_above m : {p | m < p & prime p}. Proof. have /pdivP[p pr_p p_dv_m1]: 1 < m`! + 1 by rewrite addn1 ltnS fact_gt0. exists p => //; rewrite ltnNge; apply: contraL p_dv_m1 => p_le_m. by rewrite dvdn_addr ?dvdn_fact ?prime_gt0 // gtnNdvd ?prime_gt1. Qed. (* "prime" logarithms and p-parts. *) Fixpoint logn_rec d m r := match r, edivn m d with | r'.+1, (_.+1 as m', 0) => (logn_rec d m' r').+1 | _, _ => 0 end. Definition logn p m := if prime p then logn_rec p m m else 0. Lemma lognE p m : logn p m = if [&& prime p, 0 < m & p %| m] then (logn p (m %/ p)).+1 else 0. Proof. rewrite /logn /dvdn; case p_pr: (prime p) => //. case def_m: m => // [m']; rewrite !andTb [LHS]/= -def_m /divn modn_def. case: edivnP def_m => [[|q] [|r] -> _] // def_m; congr _.+1; rewrite [_.1]/=. have{m def_m}: q < m'. by rewrite -ltnS -def_m addn0 mulnC -{1}[q.+1]mul1n ltn_pmul2r // prime_gt1. elim/ltn_ind: m' {q}q.+1 (ltn0Sn q) => -[_ []|r IHr m] //= m_gt0 le_mr. rewrite -[m in logn_rec _ _ m]prednK //=. case: edivnP => [[|q] [|_] def_q _] //; rewrite addn0 in def_q. have{def_q} lt_qm1: q < m.-1. by rewrite -[q.+1]muln1 -ltnS prednK // def_q ltn_pmul2l // prime_gt1. have{le_mr} le_m1r: m.-1 <= r by rewrite -ltnS prednK. by rewrite (IHr r) ?(IHr m.-1) // (leq_trans lt_qm1). Qed. Lemma logn_gt0 p n : (0 < logn p n) = (p \in primes n). Proof. by rewrite lognE -mem_primes; case: {+}(p \in _). Qed. Lemma ltn_log0 p n : n < p -> logn p n = 0. Proof. by case: n => [|n] ltnp; rewrite lognE ?andbF // gtnNdvd ?andbF. Qed. Lemma logn0 p : logn p 0 = 0. Proof. by rewrite /logn if_same. Qed. Lemma logn1 p : logn p 1 = 0. Proof. by rewrite lognE dvdn1 /= andbC; case: eqP => // ->. Qed. Lemma pfactor_gt0 p n : 0 < p ^ logn p n. Proof. by rewrite expn_gt0 lognE; case: (posnP p) => // ->. Qed. #[global] Hint Resolve pfactor_gt0 : core. Lemma pfactor_dvdn p n m : prime p -> m > 0 -> (p ^ n %| m) = (n <= logn p m). Proof. move=> p_pr; elim: n m => [|n IHn] m m_gt0; first exact: dvd1n. rewrite lognE p_pr m_gt0 /=; case dv_pm: (p %| m); last first. apply/dvdnP=> [] [/= q def_m]. by rewrite def_m expnS mulnCA dvdn_mulr in dv_pm. case/dvdnP: dv_pm m_gt0 => q ->{m}; rewrite muln_gt0 => /andP[p_gt0 q_gt0]. by rewrite expnSr dvdn_pmul2r // mulnK // IHn. Qed. Lemma pfactor_dvdnn p n : p ^ logn p n %| n. Proof. case: n => // n; case pr_p: (prime p); first by rewrite pfactor_dvdn. by rewrite lognE pr_p dvd1n. Qed. Lemma logn_prime p q : prime q -> logn p q = (p == q). Proof. move=> pr_q; have q_gt0 := prime_gt0 pr_q; rewrite lognE q_gt0 /=. case pr_p: (prime p); last by case: eqP pr_p pr_q => // -> ->. by rewrite dvdn_prime2 //; case: eqP => // ->; rewrite divnn q_gt0 logn1. Qed. Lemma pfactor_coprime p n : prime p -> n > 0 -> {m | coprime p m & n = m * p ^ logn p n}. Proof. move=> p_pr n_gt0; set k := logn p n. have dv_pk_n: p ^ k %| n by rewrite pfactor_dvdn. exists (n %/ p ^ k); last by rewrite divnK. rewrite prime_coprime // -(@dvdn_pmul2r (p ^ k)) ?expn_gt0 ?prime_gt0 //. by rewrite -expnS divnK // pfactor_dvdn // ltnn. Qed. Lemma pfactorK p n : prime p -> logn p (p ^ n) = n. Proof. move=> p_pr; have pn_gt0: p ^ n > 0 by rewrite expn_gt0 prime_gt0. apply/eqP; rewrite eqn_leq -pfactor_dvdn // dvdnn andbT. by rewrite -(leq_exp2l _ _ (prime_gt1 p_pr)) dvdn_leq // pfactor_dvdn. Qed. Lemma pfactorKpdiv p n : prime p -> logn (pdiv (p ^ n)) (p ^ n) = n. Proof. by case: n => // n p_pr; rewrite pdiv_pfactor ?pfactorK. Qed. Lemma dvdn_leq_log p m n : 0 < n -> m %| n -> logn p m <= logn p n. Proof. move=> n_gt0 dv_m_n; have m_gt0 := dvdn_gt0 n_gt0 dv_m_n. case p_pr: (prime p); last by do 2!rewrite lognE p_pr /=. by rewrite -pfactor_dvdn //; apply: dvdn_trans dv_m_n; rewrite pfactor_dvdn. Qed. Lemma ltn_logl p n : 0 < n -> logn p n < n. Proof. move=> n_gt0; have [p_gt1 | p_le1] := boolP (1 < p). by rewrite (leq_trans (ltn_expl _ p_gt1)) // dvdn_leq ?pfactor_dvdnn. by rewrite lognE (contraNF (@prime_gt1 _)). Qed. Lemma logn_Gauss p m n : coprime p m -> logn p (m * n) = logn p n. Proof. move=> co_pm; case p_pr: (prime p); last by rewrite /logn p_pr. have [-> | n_gt0] := posnP n; first by rewrite muln0. have [m0 | m_gt0] := posnP m; first by rewrite m0 prime_coprime ?dvdn0 in co_pm. have mn_gt0: m * n > 0 by rewrite muln_gt0 m_gt0. apply/eqP; rewrite eqn_leq andbC dvdn_leq_log ?dvdn_mull //. set k := logn p _; have: p ^ k %| m * n by rewrite pfactor_dvdn. by rewrite Gauss_dvdr ?coprimeXl // -pfactor_dvdn. Qed. Lemma logn_coprime p m : coprime p m -> logn p m = 0. Proof. by move=> coprime_pm; rewrite -[m]muln1 logn_Gauss// logn1. Qed. Lemma lognM p m n : 0 < m -> 0 < n -> logn p (m * n) = logn p m + logn p n. Proof. case p_pr: (prime p); last by rewrite /logn p_pr. have xlp := pfactor_coprime p_pr. case/xlp=> m' co_m' def_m /xlp[n' co_n' def_n] {xlp}. rewrite [in LHS]def_m [in LHS]def_n mulnCA -mulnA -expnD !logn_Gauss //. exact: pfactorK. Qed. Lemma lognX p m n : logn p (m ^ n) = n * logn p m. Proof. case p_pr: (prime p); last by rewrite /logn p_pr muln0. elim: n => [|n IHn]; first by rewrite logn1. have [->|m_gt0] := posnP m; first by rewrite exp0n // lognE andbF muln0. by rewrite expnS lognM ?IHn // expn_gt0 m_gt0. Qed. Lemma logn_div p m n : m %| n -> logn p (n %/ m) = logn p n - logn p m. Proof. rewrite dvdn_eq => /eqP def_n. case: (posnP n) => [-> |]; first by rewrite div0n logn0. by rewrite -{1 3}def_n muln_gt0 => /andP[q_gt0 m_gt0]; rewrite lognM ?addnK. Qed. Lemma dvdn_pfactor p d n : prime p -> reflect (exists2 m, m <= n & d = p ^ m) (d %| p ^ n). Proof. move=> p_pr; have pn_gt0: p ^ n > 0 by rewrite expn_gt0 prime_gt0. apply: (iffP idP) => [dv_d_pn|[m le_m_n ->]]; last first. by rewrite -(subnK le_m_n) expnD dvdn_mull. exists (logn p d); first by rewrite -(pfactorK n p_pr) dvdn_leq_log. have d_gt0: d > 0 by apply: dvdn_gt0 dv_d_pn. case: (pfactor_coprime p_pr d_gt0) => q co_p_q def_d. rewrite [LHS]def_d ((q =P 1) _) ?mul1n // -dvdn1. suff: q %| p ^ n * 1 by rewrite Gauss_dvdr // coprime_sym coprimeXl. by rewrite muln1 (dvdn_trans _ dv_d_pn) // def_d dvdn_mulr. Qed. Lemma prime_decompE n : prime_decomp n = [seq (p, logn p n) | p <- primes n]. Proof. case: n => // n; pose f0 := (0, 0); rewrite -map_comp. apply: (@eq_from_nth _ f0) => [|i lt_i_n]; first by rewrite size_map. rewrite (nth_map f0) //; case def_f: (nth _ _ i) => [p e] /=. congr (_, _); rewrite [n.+1]prod_prime_decomp //. have: (p, e) \in prime_decomp n.+1 by rewrite -def_f mem_nth. case/mem_prime_decomp=> pr_p _ _. rewrite (big_nth f0) big_mkord (bigD1 (Ordinal lt_i_n)) //=. rewrite def_f mulnC logn_Gauss ?pfactorK //. apply big_ind => [|m1 m2 com1 com2| [j ltj] /=]; first exact: coprimen1. by rewrite coprimeMr com1. rewrite -val_eqE /= => nji; case def_j: (nth _ _ j) => [q e1] /=. have: (q, e1) \in prime_decomp n.+1 by rewrite -def_j mem_nth. case/mem_prime_decomp=> pr_q e1_gt0 _; rewrite coprime_pexpr //. rewrite prime_coprime // dvdn_prime2 //; apply: contra nji => eq_pq. rewrite -(nth_uniq 0 _ _ (primes_uniq n.+1)) ?size_map //=. by rewrite !(nth_map f0) // def_f def_j /= eq_sym. Qed. (* Some combinatorial formulae. *) Lemma divn_count_dvd d n : n %/ d = \sum_(1 <= i < n.+1) (d %| i). Proof. have [-> | d_gt0] := posnP d; first by rewrite big_add1 divn0 big1. apply: (@addnI (d %| 0)); rewrite -(@big_ltn _ 0 _ 0 _ (dvdn d)) // big_mkord. rewrite (partition_big (fun i : 'I_n.+1 => inord (i %/ d)) 'I_(n %/ d).+1) //=. rewrite dvdn0 add1n -[_.+1 in LHS]card_ord -sum1_card. apply: eq_bigr => [[q ?] _]. rewrite (bigD1 (inord (q * d))) /eq_op /= !inordK ?ltnS -?leq_divRL ?mulnK //. rewrite dvdn_mull ?big1 // => [[i /= ?] /andP[/eqP <- /negPf]]. by rewrite eq_sym dvdn_eq inordK ?ltnS ?leq_div2r // => ->. Qed. Lemma logn_count_dvd p n : prime p -> logn p n = \sum_(1 <= k < n) (p ^ k %| n). Proof. rewrite big_add1 => p_prime; case: n => [|n]; first by rewrite logn0 big_geq. rewrite big_mkord -big_mkcond (eq_bigl _ _ (fun _ => pfactor_dvdn _ _ _)) //=. by rewrite big_ord_narrow ?sum1_card ?card_ord // -ltnS ltn_logl. Qed. (* Truncated real log. *) Definition trunc_log p n := let fix loop n k := if k is k'.+1 then if p <= n then (loop (n %/ p) k').+1 else 0 else 0 in if p <= 1 then 0 else loop n n. Lemma trunc_log0 p : trunc_log p 0 = 0. Proof. by case: p => [] // []. Qed. Lemma trunc_log1 p : trunc_log p 1 = 0. Proof. by case: p => [|[]]. Qed. Lemma trunc_log_bounds p n : 1 < p -> 0 < n -> let k := trunc_log p n in p ^ k <= n < p ^ k.+1. Proof. rewrite {+}/trunc_log => p_gt1; have p_gt0 := ltnW p_gt1. rewrite [p <= 1]leqNgt p_gt1 /=. set loop := (loop in loop n n); set m := n; rewrite [in n in loop m n]/m. have: m <= n by []; elim: n m => [|n IHn] [|m] //= /ltnSE-le_m_n _. have [le_p_n | // ] := leqP p _; rewrite 2!expnSr -leq_divRL -?ltn_divLR //. by apply: IHn; rewrite ?divn_gt0 // -ltnS (leq_trans (ltn_Pdiv _ _)). Qed. Lemma trunc_logP p n : 1 < p -> 0 < n -> p ^ trunc_log p n <= n. Proof. by move=> p_gt1 /(trunc_log_bounds p_gt1)/andP[]. Qed. Lemma trunc_log_ltn p n : 1 < p -> n < p ^ (trunc_log p n).+1. Proof. have [-> | n_gt0] := posnP n; first by rewrite trunc_log0 => /ltnW. by case/trunc_log_bounds/(_ n_gt0)/andP. Qed. Lemma trunc_log_max p k j : 1 < p -> p ^ j <= k -> j <= trunc_log p k. Proof. move=> p_gt1 le_pj_k; rewrite -ltnS -(@ltn_exp2l p) //. exact: leq_ltn_trans (trunc_log_ltn _ _). Qed. Lemma trunc_log_eq0 p n : (trunc_log p n == 0) = (p <= 1) || (n <= p.-1). Proof. case: p => [|[|p]]; case: n => // n; rewrite /= ltnS. have /= /andP[] := trunc_log_bounds (isT : 1 < p.+2) (isT : 0 < n.+1). case: trunc_log => [//|k] b1 b2. apply/idP/idP => [/eqP sk0 | nlep]; first by move: b2; rewrite sk0. symmetry; rewrite -[_ == _]/false /is_true -b1; apply/negbTE; rewrite -ltnNge. move: nlep; rewrite -ltnS => nlep; apply: (leq_ltn_trans nlep). by rewrite -[leqLHS]expn1; apply: leq_pexp2l. Qed. Lemma trunc_log_gt0 p n : (0 < trunc_log p n) = (1 < p) && (p.-1 < n). Proof. by rewrite ltnNge leqn0 trunc_log_eq0 negb_or -!ltnNge. Qed. Lemma trunc_log0n n : trunc_log 0 n = 0. Proof. by []. Qed. Lemma trunc_log1n n : trunc_log 1 n = 0. Proof. by []. Qed. Lemma leq_trunc_log p m n : m <= n -> trunc_log p m <= trunc_log p n. Proof. move=> mlen; case: p => [|[|p]]; rewrite ?trunc_log0n ?trunc_log1n //. case: m mlen => [|m] mlen; first by rewrite trunc_log0. apply/trunc_log_max => //; apply: leq_trans mlen; exact: trunc_logP. Qed. Lemma trunc_log_eq p n k : 1 < p -> p ^ n <= k < p ^ n.+1 -> trunc_log p k = n. Proof. move=> p_gt1 /andP[npLk kLpn]; apply/anti_leq. rewrite trunc_log_max// andbT -ltnS -(ltn_exp2l _ _ p_gt1). apply: leq_ltn_trans kLpn; apply: trunc_logP => //. by apply: leq_trans npLk; rewrite expn_gt0 ltnW. Qed. Lemma trunc_lognn p : 1 < p -> trunc_log p p = 1. Proof. by case: p => [|[|p]] // _; rewrite /trunc_log ltnSn divnn. Qed. Lemma trunc_expnK p n : 1 < p -> trunc_log p (p ^ n) = n. Proof. by move=> ?; apply: trunc_log_eq; rewrite // leqnn ltn_exp2l /=. Qed. Lemma trunc_logMp p n : 1 < p -> 0 < n -> trunc_log p (p * n) = (trunc_log p n).+1. Proof. case: p => [//|p] => p_gt0 n_gt0; apply: trunc_log_eq => //. rewrite expnS leq_pmul2l// trunc_logP//=. by rewrite expnS ltn_pmul2l// trunc_log_ltn. Qed. Lemma trunc_log2_double n : 0 < n -> trunc_log 2 n.*2 = (trunc_log 2 n).+1. Proof. by move=> n_gt0; rewrite -mul2n trunc_logMp. Qed. Lemma trunc_log2S n : 1 < n -> trunc_log 2 n = (trunc_log 2 n./2).+1. Proof. move=> n_gt1. rewrite -trunc_log2_double ?half_gt0//. rewrite -[n in LHS]odd_double_half. case: odd => //; rewrite add1n. apply: trunc_log_eq => //. rewrite leqW ?trunc_logP //= ?double_gt0 ?half_gt0//. rewrite trunc_log2_double ?half_gt0// expnS. by rewrite -doubleS mul2n leq_double trunc_log_ltn. Qed. (* Truncated up real logarithm *) Definition up_log p n := if (p <= 1) then 0 else let v := trunc_log p n in if n <= p ^ v then v else v.+1. Lemma up_log0 p : up_log p 0 = 0. Proof. by case: p => // [] []. Qed. Lemma up_log1 p : up_log p 1 = 0. Proof. by case: p => // [] []. Qed. Lemma up_log_eq0 p n : (up_log p n == 0) = (p <= 1) || (n <= 1). Proof. case: p => // [] [] // p. case: n => [|[|n]]; rewrite /up_log //=. have /= := trunc_log_bounds (isT : 1 < p.+2) (isT : 0 < n.+2). by case: (leqP _ n.+1); case: trunc_log. Qed. Lemma up_log_gt0 p n : (0 < up_log p n) = (1 < p) && (1 < n). Proof. by rewrite ltnNge leqn0 up_log_eq0 negb_or -!ltnNge. Qed. Lemma up_log_bounds p n : 1 < p -> 1 < n -> let k := up_log p n in p ^ k.-1 < n <= p ^ k. Proof. move=> p_gt1 n_gt1. have n_gt0 : 0 < n by apply: leq_trans n_gt1. rewrite /up_log (leqNgt p 1) p_gt1 /=. have /= /andP[tpLn nLtpS] := trunc_log_bounds p_gt1 n_gt0. have [nLnp|npLn] := leqP n (p ^ trunc_log p n); last by rewrite npLn ltnW. rewrite nLnp (leq_trans _ tpLn) // ltn_exp2l // prednK ?leqnn //. by case: trunc_log (leq_trans n_gt1 nLnp). Qed. Lemma up_logP p n : 1 < p -> n <= p ^ up_log p n. Proof. case: n => [|[|n]] // p_gt1; first by rewrite up_log1. by have /andP[] := up_log_bounds p_gt1 (isT: 1 < n.+2). Qed. Lemma up_log_gtn p n : 1 < p -> 1 < n -> p ^ (up_log p n).-1 < n. Proof. by case: n => [|[|n]] p_gt1 n_gt1 //; have /andP[] := up_log_bounds p_gt1 n_gt1. Qed. Lemma up_log_min p k j : 1 < p -> k <= p ^ j -> up_log p k <= j. Proof. case: k => [|[|k]] // p_gt1 kLj; rewrite ?(up_log0, up_log1) //. rewrite -[up_log _ _]prednK ?up_log_gt0 ?p_gt1 // -(@ltn_exp2l p) //. by apply: leq_trans (up_log_gtn p_gt1 (isT : 1 < k.+2)) _. Qed. Lemma leq_up_log p m n : m <= n -> up_log p m <= up_log p n. Proof. move=> mLn; case: p => [|[|p]] //. by apply/up_log_min => //; apply: leq_trans mLn (up_logP _ _). Qed. Lemma up_log_eq p n k : 1 < p -> p ^ n < k <= p ^ n.+1 -> up_log p k = n.+1. Proof. move=> p_gt1 /andP[npLk kLpn]; apply/eqP; rewrite eqn_leq. apply/andP; split; first by apply: up_log_min. rewrite -(ltn_exp2l _ _ p_gt1) //. by apply: leq_trans npLk (up_logP _ _). Qed. Lemma up_lognn p : 1 < p -> up_log p p = 1. Proof. by move=> p_gt1; apply: up_log_eq; rewrite p_gt1 /=. Qed. Lemma up_expnK p n : 1 < p -> up_log p (p ^ n) = n. Proof. case: n => [|n] p_gt1 /=; first by rewrite up_log1. by apply: up_log_eq; rewrite // leqnn andbT ltn_exp2l. Qed. Lemma up_logMp p n : 1 < p -> 0 < n -> up_log p (p * n) = (up_log p n).+1. Proof. case: p => [//|p] p_gt0. case: n => [//|[|n]] _; first by rewrite muln1 up_lognn// up_log1. apply: up_log_eq => //. rewrite expnS leq_pmul2l// up_logP// andbT. rewrite -[up_log _ _]prednK ?up_log_gt0 ?p_gt0 //. by rewrite expnS ltn_pmul2l// up_log_gtn. Qed. Lemma up_log2_double n : 0 < n -> up_log 2 n.*2 = (up_log 2 n).+1. Proof. by move=> n_gt0; rewrite -mul2n up_logMp. Qed. Lemma up_log2S n : 0 < n -> up_log 2 n.+1 = (up_log 2 (n./2.+1)).+1. Proof. case: n=> // [] [|n] // _. apply: up_log_eq => //; apply/andP; split. apply: leq_trans (_ : n./2.+1.*2 < n.+3); last first. by rewrite doubleS !ltnS -[leqRHS]odd_double_half leq_addl. have /= /andP[H1n _] := up_log_bounds (isT : 1 < 2) (isT : 1 < n./2.+2). by rewrite ltnS -leq_double -mul2n -expnS prednK ?up_log_gt0 // in H1n. rewrite -[_./2.+1]/(n./2.+2). have /= /andP[_ H2n] := up_log_bounds (isT : 1 < 2) (isT : 1 < n./2.+2). rewrite -leq_double -!mul2n -expnS in H2n. apply: leq_trans H2n. rewrite mul2n !doubleS !ltnS. by rewrite -[leqLHS]odd_double_half -add1n leq_add2r; case: odd. Qed. Lemma up_log_trunc_log p n : 1 < p -> 1 < n -> up_log p n = (trunc_log p n.-1).+1. Proof. move=> p_gt1 n_gt1; apply: up_log_eq => //. rewrite -[n]prednK ?ltnS -?pred_Sn ?[0 < n]ltnW//. by rewrite trunc_logP ?ltn_predRL// trunc_log_ltn. Qed. Lemma trunc_log_up_log p n : 1 < p -> 0 < n -> trunc_log p n = (up_log p n.+1).-1. Proof. by move=> ? ?; rewrite up_log_trunc_log. Qed. (* pi- parts *) (* Testing for membership in set of prime factors. *) Canonical nat_pred_pred := Eval hnf in [predType of nat_pred]. Coercion nat_pred_of_nat (p : nat) : nat_pred := pred1 p. Section NatPreds. Variables (n : nat) (pi : nat_pred). Definition negn : nat_pred := [predC pi]. Definition pnat : pred nat := fun m => (m > 0) && all (mem pi) (primes m). Definition partn := \prod_(0 <= p < n.+1 | p \in pi) p ^ logn p n. End NatPreds. Notation "pi ^'" := (negn pi) (at level 2, format "pi ^'") : nat_scope. Notation "pi .-nat" := (pnat pi) (at level 2, format "pi .-nat") : nat_scope. Notation "n `_ pi" := (partn n pi) : nat_scope. Section PnatTheory. Implicit Types (n p : nat) (pi rho : nat_pred). Lemma negnK pi : pi^'^' =i pi. Proof. by move=> p; apply: negbK. Qed. Lemma eq_negn pi1 pi2 : pi1 =i pi2 -> pi1^' =i pi2^'. Proof. by move=> eq_pi n; rewrite 3!inE /= eq_pi. Qed. Lemma eq_piP m n : \pi(m) =i \pi(n) <-> \pi(m) = \pi(n). Proof. rewrite /pi_of; have eqs := irr_sorted_eq ltn_trans ltnn. by split=> [|-> //] /(eqs _ _ (sorted_primes m) (sorted_primes n)) ->. Qed. Lemma part_gt0 pi n : 0 < n`_pi. Proof. exact: prodn_gt0. Qed. Hint Resolve part_gt0 : core. Lemma sub_in_partn pi1 pi2 n : {in \pi(n), {subset pi1 <= pi2}} -> n`_pi1 %| n`_pi2. Proof. move=> pi12; rewrite ![n`__]big_mkcond /=. apply (big_ind2 (fun m1 m2 => m1 %| m2)) => // [*|p _]; first exact: dvdn_mul. rewrite lognE -mem_primes; case: ifP => pi1p; last exact: dvd1n. by case: ifP => pr_p; [rewrite pi12 | rewrite if_same]. Qed. Lemma eq_in_partn pi1 pi2 n : {in \pi(n), pi1 =i pi2} -> n`_pi1 = n`_pi2. Proof. by move=> pi12; apply/eqP; rewrite eqn_dvd ?sub_in_partn // => p /pi12->. Qed. Lemma eq_partn pi1 pi2 n : pi1 =i pi2 -> n`_pi1 = n`_pi2. Proof. by move=> pi12; apply: eq_in_partn => p _. Qed. Lemma partnNK pi n : n`_pi^'^' = n`_pi. Proof. by apply: eq_partn; apply: negnK. Qed. Lemma widen_partn m pi n : n <= m -> n`_pi = \prod_(0 <= p < m.+1 | p \in pi) p ^ logn p n. Proof. move=> le_n_m; rewrite big_mkcond /=. rewrite [n`_pi](big_nat_widen _ _ m.+1) // big_mkcond /=. apply: eq_bigr => p _; rewrite ltnS lognE. by case: and3P => [[_ n_gt0 p_dv_n]|]; rewrite ?if_same // andbC dvdn_leq. Qed. Lemma eq_partn_from_log m n (pi : nat_pred) : 0 < m -> 0 < n -> {in pi, logn^~ m =1 logn^~ n} -> m`_pi = n`_pi. Proof. move=> m0 n0 eq_log; rewrite !(@widen_partn (maxn m n)) ?leq_maxl ?leq_maxr//. by apply: eq_bigr => p /eq_log ->. Qed. Lemma partn0 pi : 0`_pi = 1. Proof. by apply: big1_seq => [] [|n]; rewrite andbC. Qed. Lemma partn1 pi : 1`_pi = 1. Proof. by apply: big1_seq => [] [|[|n]]; rewrite andbC. Qed. Lemma partnM pi m n : m > 0 -> n > 0 -> (m * n)`_pi = m`_pi * n`_pi. Proof. have le_pmul m' n': m' > 0 -> n' <= m' * n' by move/prednK <-; apply: leq_addr. move=> mpos npos; rewrite !(@widen_partn (n * m)) 3?(le_pmul, mulnC) //. rewrite !big_mkord -big_split; apply: eq_bigr => p _ /=. by rewrite lognM // expnD. Qed. Lemma partnX pi m n : (m ^ n)`_pi = m`_pi ^ n. Proof. elim: n => [|n IHn]; first exact: partn1. rewrite expnS; have [->|m_gt0] := posnP m; first by rewrite partn0 exp1n. by rewrite expnS partnM ?IHn // expn_gt0 m_gt0. Qed. Lemma partn_dvd pi m n : n > 0 -> m %| n -> m`_pi %| n`_pi. Proof. move=> n_gt0 dvmn; case/dvdnP: dvmn n_gt0 => q ->{n}. by rewrite muln_gt0 => /andP[q_gt0 m_gt0]; rewrite partnM ?dvdn_mull. Qed. Lemma p_part p n : n`_p = p ^ logn p n. Proof. case (posnP (logn p n)) => [log0 |]. by rewrite log0 [n`_p]big1_seq // => q /andP [/eqP ->]; rewrite log0. rewrite logn_gt0 mem_primes; case/and3P=> _ n_gt0 dv_p_n. have le_p_n: p < n.+1 by rewrite ltnS dvdn_leq. by rewrite [n`_p]big_mkord (big_pred1 (Ordinal le_p_n)). Qed. Lemma p_part_eq1 p n : (n`_p == 1) = (p \notin \pi(n)). Proof. rewrite mem_primes p_part lognE; case: and3P => // [[p_pr _ _]]. by rewrite -dvdn1 pfactor_dvdn // logn1. Qed. Lemma p_part_gt1 p n : (n`_p > 1) = (p \in \pi(n)). Proof. by rewrite ltn_neqAle part_gt0 andbT eq_sym p_part_eq1 negbK. Qed. Lemma primes_part pi n : primes n`_pi = filter (mem pi) (primes n). Proof. have ltnT := ltn_trans; have [->|n_gt0] := posnP n; first by rewrite partn0. apply: (irr_sorted_eq ltnT ltnn); rewrite ?(sorted_primes, sorted_filter) //. move=> p; rewrite mem_filter /= !mem_primes n_gt0 part_gt0 /=. apply/andP/and3P=> [[p_pr] | [pi_p p_pr dv_p_n]]. rewrite /partn; apply big_ind => [|n1 n2 IHn1 IHn2|q pi_q]. - by rewrite dvdn1; case: eqP p_pr => // ->. - by rewrite Euclid_dvdM //; case/orP. rewrite -{1}(expn1 p) pfactor_dvdn // lognX muln_gt0. rewrite logn_gt0 mem_primes n_gt0 - andbA /=; case/and3P=> pr_q dv_q_n. by rewrite logn_prime //; case: eqP => // ->. have le_p_n: p < n.+1 by rewrite ltnS dvdn_leq. rewrite [n`_pi]big_mkord (bigD1 (Ordinal le_p_n)) //= dvdn_mulr //. by rewrite lognE p_pr n_gt0 dv_p_n expnS dvdn_mulr. Qed. Lemma filter_pi_of n m : n < m -> filter \pi(n) (index_iota 0 m) = primes n. Proof. move=> lt_n_m; have ltnT := ltn_trans; apply: (irr_sorted_eq ltnT ltnn). - by rewrite sorted_filter // iota_ltn_sorted. - exact: sorted_primes. move=> p; rewrite mem_filter mem_index_iota /= mem_primes; case: and3P => //. by case=> _ n_gt0 dv_p_n; apply: leq_ltn_trans lt_n_m; apply: dvdn_leq. Qed. Lemma partn_pi n : n > 0 -> n`_\pi(n) = n. Proof. move=> n_gt0; rewrite [RHS]prod_prime_decomp // prime_decompE big_map. by rewrite -[n`__]big_filter filter_pi_of. Qed. Lemma partnT n : n > 0 -> n`_predT = n. Proof. move=> n_gt0; rewrite -[RHS]partn_pi // [RHS]/partn big_mkcond /=. by apply: eq_bigr => p _; rewrite -logn_gt0; case: (logn p _). Qed. Lemma eqn_from_log m n : 0 < m -> 0 < n -> logn^~ m =1 logn^~ n -> m = n. Proof. by move=> ? ? /(@in1W _ predT)/eq_partn_from_log; rewrite !partnT// => ->. Qed. Lemma partnC pi n : n > 0 -> n`_pi * n`_pi^' = n. Proof. move=> n_gt0; rewrite -[RHS]partnT /partn //. do 2!rewrite mulnC big_mkcond /=; rewrite -big_split; apply: eq_bigr => p _ /=. by rewrite mulnC inE /=; case: (p \in pi); rewrite /= (muln1, mul1n). Qed. Lemma dvdn_part pi n : n`_pi %| n. Proof. by case: n => // n; rewrite -{2}[n.+1](@partnC pi) // dvdn_mulr. Qed. Lemma logn_part p m : logn p m`_p = logn p m. Proof. case p_pr: (prime p); first by rewrite p_part pfactorK. by rewrite lognE (lognE p m) p_pr. Qed. Lemma partn_lcm pi m n : m > 0 -> n > 0 -> (lcmn m n)`_pi = lcmn m`_pi n`_pi. Proof. move=> m_gt0 n_gt0; have p_gt0: lcmn m n > 0 by rewrite lcmn_gt0 m_gt0. apply/eqP; rewrite eqn_dvd dvdn_lcm !partn_dvd ?dvdn_lcml ?dvdn_lcmr //. rewrite -(dvdn_pmul2r (part_gt0 pi^' (lcmn m n))) partnC // dvdn_lcm !andbT. rewrite -[m in m %| _](partnC pi m_gt0) andbC -[n in n %| _](partnC pi n_gt0). by rewrite !dvdn_mul ?partn_dvd ?dvdn_lcml ?dvdn_lcmr. Qed. Lemma partn_gcd pi m n : m > 0 -> n > 0 -> (gcdn m n)`_pi = gcdn m`_pi n`_pi. Proof. move=> m_gt0 n_gt0; have p_gt0: gcdn m n > 0 by rewrite gcdn_gt0 m_gt0. apply/eqP; rewrite eqn_dvd dvdn_gcd !partn_dvd ?dvdn_gcdl ?dvdn_gcdr //=. rewrite -(dvdn_pmul2r (part_gt0 pi^' (gcdn m n))) partnC // dvdn_gcd. rewrite -[m in _ %| m](partnC pi m_gt0) andbC -[n in _%| n](partnC pi n_gt0). by rewrite !dvdn_mul ?partn_dvd ?dvdn_gcdl ?dvdn_gcdr. Qed. Lemma partn_biglcm (I : finType) (P : pred I) F pi : (forall i, P i -> F i > 0) -> (\big[lcmn/1%N]_(i | P i) F i)`_pi = \big[lcmn/1%N]_(i | P i) (F i)`_pi. Proof. move=> F_gt0; set m := \big[lcmn/1%N]_(i | P i) F i. have m_gt0: 0 < m by elim/big_ind: m => // p q p_gt0; rewrite lcmn_gt0 p_gt0. apply/eqP; rewrite eqn_dvd andbC; apply/andP; split. by apply/dvdn_biglcmP=> i Pi; rewrite partn_dvd // (@biglcmn_sup _ i). rewrite -(dvdn_pmul2r (part_gt0 pi^' m)) partnC //. apply/dvdn_biglcmP=> i Pi; rewrite -(partnC pi (F_gt0 i Pi)) dvdn_mul //. by rewrite (@biglcmn_sup _ i). by rewrite partn_dvd // (@biglcmn_sup _ i). Qed. Lemma partn_biggcd (I : finType) (P : pred I) F pi : #|SimplPred P| > 0 -> (forall i, P i -> F i > 0) -> (\big[gcdn/0]_(i | P i) F i)`_pi = \big[gcdn/0]_(i | P i) (F i)`_pi. Proof. move=> ntP F_gt0; set d := \big[gcdn/0]_(i | P i) F i. have d_gt0: 0 < d. case/card_gt0P: ntP => i /= Pi; have:= F_gt0 i Pi. rewrite !lt0n -!dvd0n; apply: contra => dv0d. by rewrite (dvdn_trans dv0d) // (@biggcdn_inf _ i). apply/eqP; rewrite eqn_dvd; apply/andP; split. by apply/dvdn_biggcdP=> i Pi; rewrite partn_dvd ?F_gt0 // (@biggcdn_inf _ i). rewrite -(dvdn_pmul2r (part_gt0 pi^' d)) partnC //. apply/dvdn_biggcdP=> i Pi; rewrite -(partnC pi (F_gt0 i Pi)) dvdn_mul //. by rewrite (@biggcdn_inf _ i). by rewrite partn_dvd ?F_gt0 // (@biggcdn_inf _ i). Qed. Lemma logn_gcd p m n : 0 < m -> 0 < n -> logn p (gcdn m n) = minn (logn p m) (logn p n). Proof. move=> m_gt0 n_gt0; case p_pr: (prime p); last by rewrite /logn p_pr. by apply: (@expnI p); rewrite ?prime_gt1// expn_min -!p_part partn_gcd. Qed. Lemma logn_lcm p m n : 0 < m -> 0 < n -> logn p (lcmn m n) = maxn (logn p m) (logn p n). Proof. move=> m_gt0 n_gt0; rewrite /lcmn logn_div ?dvdn_mull ?dvdn_gcdr//. by rewrite lognM// logn_gcd// -addn_min_max addnC addnK. Qed. Lemma sub_in_pnat pi rho n : {in \pi(n), {subset pi <= rho}} -> pi.-nat n -> rho.-nat n. Proof. rewrite /pnat => subpi /andP[-> pi_n]. by apply/allP=> p pr_p; apply: subpi => //; apply: (allP pi_n). Qed. Lemma eq_in_pnat pi rho n : {in \pi(n), pi =i rho} -> pi.-nat n = rho.-nat n. Proof. by move=> eqpi; apply/idP/idP; apply: sub_in_pnat => p /eqpi->. Qed. Lemma eq_pnat pi rho n : pi =i rho -> pi.-nat n = rho.-nat n. Proof. by move=> eqpi; apply: eq_in_pnat => p _. Qed. Lemma pnatNK pi n : pi^'^'.-nat n = pi.-nat n. Proof. exact: eq_pnat (negnK pi). Qed. Lemma pnatI pi rho n : [predI pi & rho].-nat n = pi.-nat n && rho.-nat n. Proof. by rewrite /pnat andbCA all_predI !andbA andbb. Qed. Lemma pnatM pi m n : pi.-nat (m * n) = pi.-nat m && pi.-nat n. Proof. rewrite /pnat muln_gt0 andbCA -andbA andbCA. case: posnP => // n_gt0; case: posnP => //= m_gt0. apply/allP/andP=> [pi_mn | [pi_m pi_n] p]. by split; apply/allP=> p m_p; apply: pi_mn; rewrite primesM // m_p ?orbT. by rewrite primesM // => /orP[]; [apply: (allP pi_m) | apply: (allP pi_n)]. Qed. Lemma pnatX pi m n : pi.-nat (m ^ n) = pi.-nat m || (n == 0). Proof. by case: n => [|n]; rewrite orbC // /pnat expn_gt0 orbC primesX. Qed. Lemma part_pnat pi n : pi.-nat n`_pi. Proof. rewrite /pnat primes_part part_gt0. by apply/allP=> p; rewrite mem_filter => /andP[]. Qed. Lemma pnatE pi p : prime p -> pi.-nat p = (p \in pi). Proof. by move=> pr_p; rewrite /pnat prime_gt0 ?primes_prime //= andbT. Qed. Lemma pnat_id p : prime p -> p.-nat p. Proof. by move=> pr_p; rewrite pnatE ?inE /=. Qed. Lemma coprime_pi' m n : m > 0 -> n > 0 -> coprime m n = \pi(m)^'.-nat n. Proof. by move=> m_gt0 n_gt0; rewrite /pnat n_gt0 all_predC coprime_has_primes. Qed. Lemma pnat_pi n : n > 0 -> \pi(n).-nat n. Proof. by rewrite /pnat => ->; apply/allP. Qed. Lemma pi_of_dvd m n : m %| n -> n > 0 -> {subset \pi(m) <= \pi(n)}. Proof. move=> m_dv_n n_gt0 p; rewrite !mem_primes n_gt0 => /and3P[-> _ p_dv_m]. exact: dvdn_trans p_dv_m m_dv_n. Qed. Lemma pi_ofM m n : m > 0 -> n > 0 -> \pi(m * n) =i [predU \pi(m) & \pi(n)]. Proof. by move=> m_gt0 n_gt0 p; apply: primesM. Qed. Lemma pi_of_part pi n : n > 0 -> \pi(n`_pi) =i [predI \pi(n) & pi]. Proof. by move=> n_gt0 p; rewrite /pi_of primes_part mem_filter andbC. Qed. Lemma pi_of_exp p n : n > 0 -> \pi(p ^ n) = \pi(p). Proof. by move=> n_gt0; rewrite /pi_of primesX. Qed. Lemma pi_of_prime p : prime p -> \pi(p) =i (p : nat_pred). Proof. by move=> pr_p q; rewrite /pi_of primes_prime // mem_seq1. Qed. Lemma p'natEpi p n : n > 0 -> p^'.-nat n = (p \notin \pi(n)). Proof. by case: n => // n _; rewrite /pnat all_predC has_pred1. Qed. Lemma p'natE p n : prime p -> p^'.-nat n = ~~ (p %| n). Proof. case: n => [|n] p_pr; first by case: p p_pr. by rewrite p'natEpi // mem_primes p_pr. Qed. Lemma pnatPpi pi n p : pi.-nat n -> p \in \pi(n) -> p \in pi. Proof. by case/andP=> _ /allP; apply. Qed. Lemma pnat_dvd m n pi : m %| n -> pi.-nat n -> pi.-nat m. Proof. by case/dvdnP=> q ->; rewrite pnatM; case/andP. Qed. Lemma pnat_div m n pi : m %| n -> pi.-nat n -> pi.-nat (n %/ m). Proof. case/dvdnP=> q ->; rewrite pnatM andbC => /andP[]. by case: m => // m _; rewrite mulnK. Qed. Lemma pnat_coprime pi m n : pi.-nat m -> pi^'.-nat n -> coprime m n. Proof. case/andP=> m_gt0 pi_m /andP[n_gt0 pi'_n]; rewrite coprime_has_primes //. by apply/hasPn=> p /(allP pi'_n); apply/contra/allP. Qed. Lemma p'nat_coprime pi m n : pi^'.-nat m -> pi.-nat n -> coprime m n. Proof. by move=> pi'm pi_n; rewrite (pnat_coprime pi'm) ?pnatNK. Qed. Lemma sub_pnat_coprime pi rho m n : {subset rho <= pi^'} -> pi.-nat m -> rho.-nat n -> coprime m n. Proof. by move=> pi'rho pi_m /(sub_in_pnat (in1W pi'rho)); apply: pnat_coprime. Qed. Lemma coprime_partC pi m n : coprime m`_pi n`_pi^'. Proof. by apply: (@pnat_coprime pi); apply: part_pnat. Qed. Lemma pnat_1 pi n : pi.-nat n -> pi^'.-nat n -> n = 1. Proof. by move=> pi_n pi'_n; rewrite -(eqnP (pnat_coprime pi_n pi'_n)) gcdnn. Qed. Lemma part_pnat_id pi n : pi.-nat n -> n`_pi = n. Proof. case/andP=> n_gt0 pi_n; rewrite -[RHS]partnT // /partn big_mkcond /=. apply: eq_bigr=> p _; have [->|] := posnP (logn p n); first by rewrite if_same. by rewrite logn_gt0 => /(allP pi_n)/= ->. Qed. Lemma part_p'nat pi n : pi^'.-nat n -> n`_pi = 1. Proof. case/andP=> n_gt0 pi'_n; apply: big1_seq => p /andP[pi_p _]. by have [-> //|] := posnP (logn p n); rewrite logn_gt0; case/(allP pi'_n)/negP. Qed. Lemma partn_eq1 pi n : n > 0 -> (n`_pi == 1) = pi^'.-nat n. Proof. move=> n_gt0; apply/eqP/idP=> [pi_n_1|]; last exact: part_p'nat. by rewrite -(partnC pi n_gt0) pi_n_1 mul1n part_pnat. Qed. Lemma pnatP pi n : n > 0 -> reflect (forall p, prime p -> p %| n -> p \in pi) (pi.-nat n). Proof. move=> n_gt0; rewrite /pnat n_gt0. apply: (iffP allP) => /= pi_n p => [pr_p p_n|]. by rewrite pi_n // mem_primes pr_p n_gt0. by rewrite mem_primes n_gt0 /=; case/andP; move: p. Qed. Lemma pi_pnat pi p n : p.-nat n -> p \in pi -> pi.-nat n. Proof. move=> p_n pi_p; have [n_gt0 _] := andP p_n. by apply/pnatP=> // q q_pr /(pnatP _ n_gt0 p_n _ q_pr)/eqnP->. Qed. Lemma p_natP p n : p.-nat n -> {k | n = p ^ k}. Proof. by move=> p_n; exists (logn p n); rewrite -p_part part_pnat_id. Qed. Lemma pi'_p'nat pi p n : pi^'.-nat n -> p \in pi -> p^'.-nat n. Proof. by move=> pi'n pi_p; apply: sub_in_pnat pi'n => q _; apply: contraNneq => ->. Qed. Lemma pi_p'nat p pi n : pi.-nat n -> p \in pi^' -> p^'.-nat n. Proof. by move=> pi_n; apply: pi'_p'nat; rewrite pnatNK. Qed. Lemma partn_part pi rho n : {subset pi <= rho} -> n`_rho`_pi = n`_pi. Proof. move=> pi_sub_rho; have [->|n_gt0] := posnP n; first by rewrite !partn0 partn1. rewrite -[in RHS](partnC rho n_gt0) partnM //. suffices: pi^'.-nat n`_rho^' by move/part_p'nat->; rewrite muln1. by apply: sub_in_pnat (part_pnat _ _) => q _; apply/contra/pi_sub_rho. Qed. Lemma partnI pi rho n : n`_[predI pi & rho] = n`_pi`_rho. Proof. rewrite -(@partnC [predI pi & rho] _`_rho) //. symmetry; rewrite 2?partn_part; try by move=> p /andP []. rewrite mulnC part_p'nat ?mul1n // pnatNK pnatI part_pnat andbT. exact: pnat_dvd (dvdn_part _ _) (part_pnat _ _). Qed. Lemma odd_2'nat n : odd n = 2^'.-nat n. Proof. by case: n => // n; rewrite p'natE // dvdn2 negbK. Qed. End PnatTheory. #[global] Hint Resolve part_gt0 : core. (************************************) (* Properties of the divisors list. *) (************************************) Lemma divisors_correct n : n > 0 -> [/\ uniq (divisors n), sorted leq (divisors n) & forall d, (d \in divisors n) = (d %| n)]. Proof. move/prod_prime_decomp=> def_n; rewrite {4}def_n {def_n}. have: all prime (primes n) by apply/allP=> p; rewrite mem_primes; case/andP. have:= primes_uniq n; rewrite /primes /divisors; move/prime_decomp: n. elim=> [|[p e] pd] /=; first by split=> // d; rewrite big_nil dvdn1 mem_seq1. rewrite big_cons /=; move: (foldr _ _ pd) => divs. move=> IHpd /andP[npd_p Upd] /andP[pr_p pr_pd]. have lt0p: 0 < p by apply: prime_gt0. have {IHpd Upd}[Udivs Odivs mem_divs] := IHpd Upd pr_pd. have ndivs_p m: p * m \notin divs. suffices: p \notin divs; rewrite !mem_divs. by apply: contra => /dvdnP[n ->]; rewrite mulnCA dvdn_mulr. have ndv_p_1: ~~(p %| 1) by rewrite dvdn1 neq_ltn orbC prime_gt1. rewrite big_seq; elim/big_ind: _ => [//|u v npu npv|[q f] /= pd_qf]. by rewrite Euclid_dvdM //; apply/norP. elim: (f) => // f'; rewrite expnS Euclid_dvdM // orbC negb_or => -> {f'}/=. have pd_q: q \in unzip1 pd by apply/mapP; exists (q, f). by apply: contra npd_p; rewrite dvdn_prime2 // ?(allP pr_pd) // => /eqP->. elim: e => [|e] /=; first by split=> // d; rewrite mul1n. have Tmulp_inj: injective (NatTrec.mul p). by move=> u v /eqP; rewrite !natTrecE eqn_pmul2l // => /eqP. move: (iter e _ _) => divs' [Udivs' Odivs' mem_divs']; split=> [||d]. - rewrite merge_uniq cat_uniq map_inj_uniq // Udivs Udivs' andbT /=. apply/hasP=> [[d dv_d /mapP[d' _ def_d]]]. by case/idPn: dv_d; rewrite def_d natTrecE. - rewrite (merge_sorted leq_total) //; case: (divs') Odivs' => //= d ds. rewrite (@map_path _ _ _ _ leq xpred0) ?has_pred0 // => u v _. by rewrite !natTrecE leq_pmul2l. rewrite mem_merge mem_cat; case dv_d_p: (p %| d). case/dvdnP: dv_d_p => d' ->{d}; rewrite mulnC (negbTE (ndivs_p d')) orbF. rewrite expnS -mulnA dvdn_pmul2l // -mem_divs'. by rewrite -(mem_map Tmulp_inj divs') natTrecE. case pdiv_d: (_ \in _). by case/mapP: pdiv_d dv_d_p => d' _ ->; rewrite natTrecE dvdn_mulr. rewrite mem_divs Gauss_dvdr // coprime_sym. by rewrite coprimeXl ?prime_coprime ?dv_d_p. Qed. Lemma sorted_divisors n : sorted leq (divisors n). Proof. by case: (posnP n) => [-> | /divisors_correct[]]. Qed. Lemma divisors_uniq n : uniq (divisors n). Proof. by case: (posnP n) => [-> | /divisors_correct[]]. Qed. Lemma sorted_divisors_ltn n : sorted ltn (divisors n). Proof. by rewrite ltn_sorted_uniq_leq divisors_uniq sorted_divisors. Qed. Lemma dvdn_divisors d m : 0 < m -> (d %| m) = (d \in divisors m). Proof. by case/divisors_correct. Qed. Lemma divisor1 n : 1 \in divisors n. Proof. by case: n => // n; rewrite -dvdn_divisors // dvd1n. Qed. Lemma divisors_id n : 0 < n -> n \in divisors n. Proof. by move/dvdn_divisors <-. Qed. (* Big sum / product lemmas*) Lemma dvdn_sum d I r (K : pred I) F : (forall i, K i -> d %| F i) -> d %| \sum_(i <- r | K i) F i. Proof. by move=> dF; elim/big_ind: _ => //; apply: dvdn_add. Qed. Lemma dvdn_partP n m : 0 < n -> reflect (forall p, p \in \pi(n) -> n`_p %| m) (n %| m). Proof. move=> n_gt0; apply: (iffP idP) => n_dvd_m => [p _|]. by apply: dvdn_trans n_dvd_m; apply: dvdn_part. have [-> // | m_gt0] := posnP m. rewrite -(partnT n_gt0) -(partnT m_gt0). rewrite !(@widen_partn (m + n)) ?leq_addl ?leq_addr // /in_mem /=. elim/big_ind2: _ => // [* | q _]; first exact: dvdn_mul. have [-> // | ] := posnP (logn q n); rewrite logn_gt0 => q_n. have pr_q: prime q by move: q_n; rewrite mem_primes; case/andP. by have:= n_dvd_m q q_n; rewrite p_part !pfactor_dvdn // pfactorK. Qed. Lemma modn_partP n a b : 0 < n -> reflect (forall p : nat, p \in \pi(n) -> a = b %[mod n`_p]) (a == b %[mod n]). Proof. move=> n_gt0; wlog le_b_a: a b / b <= a. move=> IH; case: (leqP b a) => [|/ltnW] /IH {IH}// IH. by rewrite eq_sym; apply: (iffP IH) => eqab p /eqab. rewrite eqn_mod_dvd //; apply: (iffP (dvdn_partP _ n_gt0)) => eqab p /eqab; by rewrite -eqn_mod_dvd // => /eqP. Qed. (* The Euler totient function *) Lemma totientE n : n > 0 -> totient n = \prod_(p <- primes n) (p.-1 * p ^ (logn p n).-1). Proof. move=> n_gt0; rewrite /totient n_gt0 prime_decompE unlock. by elim: (primes n) => //= [p pr ->]; rewrite !natTrecE. Qed. Lemma totient_gt0 n : (0 < totient n) = (0 < n). Proof. case: n => // n; rewrite totientE // big_seq_cond prodn_cond_gt0 // => p. by rewrite mem_primes muln_gt0 expn_gt0; case: p => [|[|]]. Qed. Lemma totient_pfactor p e : prime p -> e > 0 -> totient (p ^ e) = p.-1 * p ^ e.-1. Proof. move=> p_pr e_gt0; rewrite totientE ?expn_gt0 ?prime_gt0 //. by rewrite primesX // primes_prime // unlock /= muln1 pfactorK. Qed. Lemma totient_prime p : prime p -> totient p = p.-1. Proof. by move=> p_prime; rewrite -{1}[p]expn1 totient_pfactor // muln1. Qed. Lemma totient_coprime m n : coprime m n -> totient (m * n) = totient m * totient n. Proof. move=> co_mn; have [-> //| m_gt0] := posnP m. have [->|n_gt0] := posnP n; first by rewrite !muln0. rewrite !totientE ?muln_gt0 ?m_gt0 //. have /(perm_big _)->: perm_eq (primes (m * n)) (primes m ++ primes n). apply: uniq_perm => [||p]; first exact: primes_uniq. by rewrite cat_uniq !primes_uniq -coprime_has_primes // co_mn. by rewrite mem_cat primesM. rewrite big_cat /= !big_seq. congr (_ * _); apply: eq_bigr => p; rewrite mem_primes => /and3P[_ _ dvp]. rewrite (mulnC m) logn_Gauss //; move: co_mn. by rewrite -(divnK dvp) coprimeMl => /andP[]. rewrite logn_Gauss //; move: co_mn. by rewrite coprime_sym -(divnK dvp) coprimeMl => /andP[]. Qed. Lemma totient_count_coprime n : totient n = \sum_(0 <= d < n) coprime n d. Proof. elim/ltn_ind: n => // n IHn. case: (leqP n 1) => [|lt1n]; first by rewrite unlock; case: (n) => [|[]]. pose p := pdiv n; have p_pr: prime p by apply: pdiv_prime. have p1 := prime_gt1 p_pr; have p0 := ltnW p1. pose np := n`_p; pose np' := n`_p^'. have co_npp': coprime np np' by rewrite coprime_partC. have [n0 np0 np'0]: [/\ n > 0, np > 0 & np' > 0] by rewrite ltnW ?part_gt0. have def_n: n = np * np' by rewrite partnC. have lnp0: 0 < logn p n by rewrite lognE p_pr n0 pdiv_dvd. pose in_mod k (k0 : k > 0) d := Ordinal (ltn_pmod d k0). rewrite {1}def_n totient_coprime // {IHn}(IHn np') ?big_mkord; last first. by rewrite def_n ltn_Pmull // /np p_part -(expn0 p) ltn_exp2l. have ->: totient np = #|[pred d : 'I_np | coprime np d]|. rewrite [np in LHS]p_part totient_pfactor //=; set q := p ^ _. apply: (@addnI (1 * q)); rewrite -mulnDl [1 + _]prednK // mul1n. have def_np: np = p * q by rewrite -expnS prednK // -p_part. pose mulp := [fun d : 'I_q => in_mod _ np0 (p * d)]. rewrite -def_np -{1}[np]card_ord -(cardC (mem (codom mulp))). rewrite card_in_image => [|[d1 ltd1] [d2 ltd2] /= _ _ []]; last first. move/eqP; rewrite def_np -!muln_modr ?modn_small //. by rewrite eqn_pmul2l // => eq_op12; apply/eqP. rewrite card_ord; congr (q + _); apply: eq_card => d /=. rewrite !inE [np in coprime np _]p_part coprime_pexpl ?prime_coprime //. congr (~~ _); apply/codomP/idP=> [[d' -> /=] | /dvdnP[r def_d]]. by rewrite def_np -muln_modr // dvdn_mulr. do [rewrite mulnC; case: d => d ltd /=] in def_d *. have ltr: r < q by rewrite -(ltn_pmul2l p0) -def_np -def_d. by exists (Ordinal ltr); apply: val_inj; rewrite /= -def_d modn_small. pose h (d : 'I_n) := (in_mod _ np0 d, in_mod _ np'0 d). pose h' (d : 'I_np * 'I_np') := in_mod _ n0 (chinese np np' d.1 d.2). rewrite -!big_mkcond -sum_nat_const pair_big (reindex_onto h h') => [|[d d'] _]. apply: eq_bigl => [[d ltd] /=]; rewrite !inE -val_eqE /= andbC !coprime_modr. by rewrite def_n -chinese_mod // -coprimeMl -def_n modn_small ?eqxx. apply/eqP; rewrite /eq_op /= /eq_op /= !modn_dvdm ?dvdn_part //. by rewrite chinese_modl // chinese_modr // !modn_small ?eqxx ?ltn_ord. Qed.