(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *) (* Distributed under the terms of CeCILL-B. *) From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat. From mathcomp Require Import seq choice fintype path. Set Implicit Arguments. Unset Strict Implicit. Unset Printing Implicit Defensive. (******************************************************************************) (* This file defines tuples, i.e., sequences with a fixed (known) length, *) (* and sequences with bounded length. *) (* For tuples we define: *) (* n.-tuple T == the type of n-tuples of elements of type T. *) (* [tuple of s] == the tuple whose underlying sequence (value) is s. *) (* The size of s must be known: specifically, Coq must *) (* be able to infer a Canonical tuple projecting on s. *) (* in_tuple s == the (size s).-tuple with value s. *) (* [tuple] == the empty tuple. *) (* [tuple x1; ..; xn] == the explicit n.-tuple . *) (* [tuple E | i < n] == the n.-tuple with general term E (i : 'I_n is bound *) (* in E). *) (* tcast Emn t == the m.-tuple t cast as an n.-tuple using Emn : m = n.*) (* As n.-tuple T coerces to seq t, all seq operations (size, nth, ...) can be *) (* applied to t : n.-tuple T; we provide a few specialized instances when *) (* avoids the need for a default value. *) (* tsize t == the size of t (the n in n.-tuple T) *) (* tnth t i == the i'th component of t, where i : 'I_n. *) (* [tnth t i] == the i'th component of t, where i : nat and i < n *) (* is convertible to true. *) (* thead t == the first element of t, when n is m.+1 for some m. *) (* For bounded sequences we define: *) (* n.-bseq T == the type of bounded sequences of elements of type T, *) (* the length of a bounded sequence is smaller or *) (* or equal to n. *) (* [bseq of s] == the bounded sequence whose underlying value is s. *) (* The size of s must be known. *) (* in_bseq s == the (size s).-bseq with value s. *) (* [bseq] == the empty bseq. *) (* insub_bseq n s == the n.-bseq of value s if size s <= n, else [bseq]. *) (* [bseq x1; ..; xn] == the explicit n.-bseq . *) (* cast_bseq Emn t == the m.-bseq t cast as an n.-tuple using Emn : m = n. *) (* widen_bseq Lmn t == the m.-bseq t cast as an n.-tuple using Lmn : m <= n.*) (* Most seq constructors (cons, behead, cat, rcons, belast, take, drop, rot, *) (* rotr, map, ...) can be used to build tuples and bounded sequences via *) (* the [tuple of s] and [bseq of s] constructs respectively. *) (* Tuples and bounded sequences are actually instances of subType of seq, *) (* and inherit all combinatorial structures, including the finType structure. *) (* Some useful lemmas and definitions: *) (* tuple0 : [tuple] is the only 0.-tuple *) (* bseq0 : [bseq] is the only 0.-bseq *) (* tupleP : elimination view for n.+1.-tuple *) (* ord_tuple n : the n.-tuple of all i : 'I_n *) (******************************************************************************) Section TupleDef. Variables (n : nat) (T : Type). Structure tuple_of : Type := Tuple {tval :> seq T; _ : size tval == n}. Canonical tuple_subType := Eval hnf in [subType for tval]. Implicit Type t : tuple_of. Definition tsize of tuple_of := n. Lemma size_tuple t : size t = n. Proof. exact: (eqP (valP t)). Qed. Lemma tnth_default t : 'I_n -> T. Proof. by rewrite -(size_tuple t); case: (tval t) => [|//] []. Qed. Definition tnth t i := nth (tnth_default t i) t i. Lemma tnth_nth x t i : tnth t i = nth x t i. Proof. by apply: set_nth_default; rewrite size_tuple. Qed. Lemma map_tnth_enum t : map (tnth t) (enum 'I_n) = t. Proof. case def_t: {-}(val t) => [|x0 t']. by rewrite [enum _]size0nil // -cardE card_ord -(size_tuple t) def_t. apply: (@eq_from_nth _ x0) => [|i]; rewrite size_map. by rewrite -cardE size_tuple card_ord. move=> lt_i_e; have lt_i_n: i < n by rewrite -cardE card_ord in lt_i_e. by rewrite (nth_map (Ordinal lt_i_n)) // (tnth_nth x0) nth_enum_ord. Qed. Lemma eq_from_tnth t1 t2 : tnth t1 =1 tnth t2 -> t1 = t2. Proof. by move/eq_map=> eq_t; apply: val_inj; rewrite /= -!map_tnth_enum eq_t. Qed. Definition tuple t mkT : tuple_of := mkT (let: Tuple _ tP := t return size t == n in tP). Lemma tupleE t : tuple (fun sP => @Tuple t sP) = t. Proof. by case: t. Qed. End TupleDef. Notation "n .-tuple" := (tuple_of n) (at level 2, format "n .-tuple") : type_scope. Notation "{ 'tuple' n 'of' T }" := (n.-tuple T : predArgType) (at level 0, only parsing) : type_scope. Notation "[ 'tuple' 'of' s ]" := (tuple (fun sP => @Tuple _ _ s sP)) (at level 0, format "[ 'tuple' 'of' s ]") : form_scope. Notation "[ 'tnth' t i ]" := (tnth t (@Ordinal (tsize t) i (erefl true))) (at level 0, t, i at level 8, format "[ 'tnth' t i ]") : form_scope. Canonical nil_tuple T := Tuple (isT : @size T [::] == 0). Canonical cons_tuple n T x (t : n.-tuple T) := Tuple (valP t : size (x :: t) == n.+1). Notation "[ 'tuple' x1 ; .. ; xn ]" := [tuple of x1 :: .. [:: xn] ..] (at level 0, format "[ 'tuple' '[' x1 ; '/' .. ; '/' xn ']' ]") : form_scope. Notation "[ 'tuple' ]" := [tuple of [::]] (at level 0, format "[ 'tuple' ]") : form_scope. Section CastTuple. Variable T : Type. Definition in_tuple (s : seq T) := Tuple (eqxx (size s)). Definition tcast m n (eq_mn : m = n) t := let: erefl in _ = n := eq_mn return n.-tuple T in t. Lemma tcastE m n (eq_mn : m = n) t i : tnth (tcast eq_mn t) i = tnth t (cast_ord (esym eq_mn) i). Proof. by case: n / eq_mn in i *; rewrite cast_ord_id. Qed. Lemma tcast_id n (eq_nn : n = n) t : tcast eq_nn t = t. Proof. by rewrite (eq_axiomK eq_nn). Qed. Lemma tcastK m n (eq_mn : m = n) : cancel (tcast eq_mn) (tcast (esym eq_mn)). Proof. by case: n / eq_mn. Qed. Lemma tcastKV m n (eq_mn : m = n) : cancel (tcast (esym eq_mn)) (tcast eq_mn). Proof. by case: n / eq_mn. Qed. Lemma tcast_trans m n p (eq_mn : m = n) (eq_np : n = p) t: tcast (etrans eq_mn eq_np) t = tcast eq_np (tcast eq_mn t). Proof. by case: n / eq_mn eq_np; case: p /. Qed. Lemma tvalK n (t : n.-tuple T) : in_tuple t = tcast (esym (size_tuple t)) t. Proof. by apply: val_inj => /=; case: _ / (esym _). Qed. Lemma val_tcast m n (eq_mn : m = n) (t : m.-tuple T) : tcast eq_mn t = t :> seq T. Proof. by case: n / eq_mn. Qed. Lemma in_tupleE s : in_tuple s = s :> seq T. Proof. by []. Qed. End CastTuple. Section SeqTuple. Variables (n m : nat) (T U rT : Type). Implicit Type t : n.-tuple T. Lemma rcons_tupleP t x : size (rcons t x) == n.+1. Proof. by rewrite size_rcons size_tuple. Qed. Canonical rcons_tuple t x := Tuple (rcons_tupleP t x). Lemma nseq_tupleP x : @size T (nseq n x) == n. Proof. by rewrite size_nseq. Qed. Canonical nseq_tuple x := Tuple (nseq_tupleP x). Lemma iota_tupleP : size (iota m n) == n. Proof. by rewrite size_iota. Qed. Canonical iota_tuple := Tuple iota_tupleP. Lemma behead_tupleP t : size (behead t) == n.-1. Proof. by rewrite size_behead size_tuple. Qed. Canonical behead_tuple t := Tuple (behead_tupleP t). Lemma belast_tupleP x t : size (belast x t) == n. Proof. by rewrite size_belast size_tuple. Qed. Canonical belast_tuple x t := Tuple (belast_tupleP x t). Lemma cat_tupleP t (u : m.-tuple T) : size (t ++ u) == n + m. Proof. by rewrite size_cat !size_tuple. Qed. Canonical cat_tuple t u := Tuple (cat_tupleP t u). Lemma take_tupleP t : size (take m t) == minn m n. Proof. by rewrite size_take size_tuple eqxx. Qed. Canonical take_tuple t := Tuple (take_tupleP t). Lemma drop_tupleP t : size (drop m t) == n - m. Proof. by rewrite size_drop size_tuple. Qed. Canonical drop_tuple t := Tuple (drop_tupleP t). Lemma rev_tupleP t : size (rev t) == n. Proof. by rewrite size_rev size_tuple. Qed. Canonical rev_tuple t := Tuple (rev_tupleP t). Lemma rot_tupleP t : size (rot m t) == n. Proof. by rewrite size_rot size_tuple. Qed. Canonical rot_tuple t := Tuple (rot_tupleP t). Lemma rotr_tupleP t : size (rotr m t) == n. Proof. by rewrite size_rotr size_tuple. Qed. Canonical rotr_tuple t := Tuple (rotr_tupleP t). Lemma map_tupleP f t : @size rT (map f t) == n. Proof. by rewrite size_map size_tuple. Qed. Canonical map_tuple f t := Tuple (map_tupleP f t). Lemma scanl_tupleP f x t : @size rT (scanl f x t) == n. Proof. by rewrite size_scanl size_tuple. Qed. Canonical scanl_tuple f x t := Tuple (scanl_tupleP f x t). Lemma pairmap_tupleP f x t : @size rT (pairmap f x t) == n. Proof. by rewrite size_pairmap size_tuple. Qed. Canonical pairmap_tuple f x t := Tuple (pairmap_tupleP f x t). Lemma zip_tupleP t (u : n.-tuple U) : size (zip t u) == n. Proof. by rewrite size1_zip !size_tuple. Qed. Canonical zip_tuple t u := Tuple (zip_tupleP t u). Lemma allpairs_tupleP f t (u : m.-tuple U) : @size rT (allpairs f t u) == n * m. Proof. by rewrite size_allpairs !size_tuple. Qed. Canonical allpairs_tuple f t u := Tuple (allpairs_tupleP f t u). Lemma sort_tupleP r t : size (sort r t) == n. Proof. by rewrite size_sort size_tuple. Qed. Canonical sort_tuple r t := Tuple (sort_tupleP r t). Definition thead (u : n.+1.-tuple T) := tnth u ord0. Lemma tnth0 x t : tnth [tuple of x :: t] ord0 = x. Proof. by []. Qed. Lemma tnthS x t i : tnth [tuple of x :: t] (lift ord0 i) = tnth t i. Proof. by rewrite (tnth_nth (tnth_default t i)). Qed. Lemma theadE x t : thead [tuple of x :: t] = x. Proof. by []. Qed. Lemma tuple0 : all_equal_to ([tuple] : 0.-tuple T). Proof. by move=> t; apply: val_inj; case: t => [[]]. Qed. Variant tuple1_spec : n.+1.-tuple T -> Type := Tuple1spec x t : tuple1_spec [tuple of x :: t]. Lemma tupleP u : tuple1_spec u. Proof. case: u => [[|x s] //= sz_s]; pose t := @Tuple n _ s sz_s. by rewrite (_ : Tuple _ = [tuple of x :: t]) //; apply: val_inj. Qed. Lemma tnth_map f t i : tnth [tuple of map f t] i = f (tnth t i) :> rT. Proof. by apply: nth_map; rewrite size_tuple. Qed. Lemma tnth_nseq x i : tnth [tuple of nseq n x] i = x. Proof. by rewrite !(tnth_nth (tnth_default (nseq_tuple x) i)) nth_nseq ltn_ord. Qed. End SeqTuple. Lemma tnth_behead n T (t : n.+1.-tuple T) i : tnth [tuple of behead t] i = tnth t (inord i.+1). Proof. by case/tupleP: t => x t; rewrite !(tnth_nth x) inordK ?ltnS. Qed. Lemma tuple_eta n T (t : n.+1.-tuple T) : t = [tuple of thead t :: behead t]. Proof. by case/tupleP: t => x t; apply: val_inj. Qed. Section TupleQuantifiers. Variables (n : nat) (T : Type). Implicit Types (a : pred T) (t : n.-tuple T). Lemma forallb_tnth a t : [forall i, a (tnth t i)] = all a t. Proof. apply: negb_inj; rewrite -has_predC -has_map negb_forall. apply/existsP/(has_nthP true) => [[i a_t_i] | [i lt_i_n a_t_i]]. by exists i; rewrite ?size_tuple // -tnth_nth tnth_map. rewrite size_tuple in lt_i_n; exists (Ordinal lt_i_n). by rewrite -tnth_map (tnth_nth true). Qed. Lemma existsb_tnth a t : [exists i, a (tnth t i)] = has a t. Proof. by apply: negb_inj; rewrite negb_exists -all_predC -forallb_tnth. Qed. Lemma all_tnthP a t : reflect (forall i, a (tnth t i)) (all a t). Proof. by rewrite -forallb_tnth; apply: forallP. Qed. Lemma has_tnthP a t : reflect (exists i, a (tnth t i)) (has a t). Proof. by rewrite -existsb_tnth; apply: existsP. Qed. End TupleQuantifiers. Arguments all_tnthP {n T a t}. Arguments has_tnthP {n T a t}. Section EqTuple. Variables (n : nat) (T : eqType). Definition tuple_eqMixin := Eval hnf in [eqMixin of n.-tuple T by <:]. Canonical tuple_eqType := Eval hnf in EqType (n.-tuple T) tuple_eqMixin. Canonical tuple_predType := PredType (pred_of_seq : n.-tuple T -> pred T). Lemma eqEtuple (t1 t2 : n.-tuple T) : (t1 == t2) = [forall i, tnth t1 i == tnth t2 i]. Proof. by apply/eqP/'forall_eqP => [->|/eq_from_tnth]. Qed. Lemma memtE (t : n.-tuple T) : mem t = mem (tval t). Proof. by []. Qed. Lemma mem_tnth i (t : n.-tuple T) : tnth t i \in t. Proof. by rewrite mem_nth ?size_tuple. Qed. Lemma memt_nth x0 (t : n.-tuple T) i : i < n -> nth x0 t i \in t. Proof. by move=> i_lt_n; rewrite mem_nth ?size_tuple. Qed. Lemma tnthP (t : n.-tuple T) x : reflect (exists i, x = tnth t i) (x \in t). Proof. apply: (iffP idP) => [/(nthP x)[i ltin <-] | [i ->]]; last exact: mem_tnth. by rewrite size_tuple in ltin; exists (Ordinal ltin); rewrite (tnth_nth x). Qed. Lemma seq_tnthP (s : seq T) x : x \in s -> {i | x = tnth (in_tuple s) i}. Proof. move=> s_x; pose i := index x s; have lt_i: i < size s by rewrite index_mem. by exists (Ordinal lt_i); rewrite (tnth_nth x) nth_index. Qed. Lemma tuple_uniqP (t : n.-tuple T) : reflect (injective (tnth t)) (uniq t). Proof. case: {+}n => [|m] in t *; first by rewrite tuple0; constructor => -[]. pose x0 := tnth t ord0; apply/(equivP (uniqP x0)); split=> tinj i j. by rewrite !(tnth_nth x0) => /tinj/val_inj; apply; rewrite size_tuple inE. rewrite !size_tuple !inE => im jm; have := tinj (Ordinal im) (Ordinal jm). by rewrite !(tnth_nth x0) => /[apply]-[]. Qed. End EqTuple. Definition tuple_choiceMixin n (T : choiceType) := [choiceMixin of n.-tuple T by <:]. Canonical tuple_choiceType n (T : choiceType) := Eval hnf in ChoiceType (n.-tuple T) (tuple_choiceMixin n T). Definition tuple_countMixin n (T : countType) := [countMixin of n.-tuple T by <:]. Canonical tuple_countType n (T : countType) := Eval hnf in CountType (n.-tuple T) (tuple_countMixin n T). Canonical tuple_subCountType n (T : countType) := Eval hnf in [subCountType of n.-tuple T]. Module Type FinTupleSig. Section FinTupleSig. Variables (n : nat) (T : finType). Parameter enum : seq (n.-tuple T). Axiom enumP : Finite.axiom enum. Axiom size_enum : size enum = #|T| ^ n. End FinTupleSig. End FinTupleSig. Module FinTuple : FinTupleSig. Section FinTuple. Variables (n : nat) (T : finType). Definition enum : seq (n.-tuple T) := let extend e := flatten (codom (fun x => map (cons x) e)) in pmap insub (iter n extend [::[::]]). Lemma enumP : Finite.axiom enum. Proof. case=> /= t t_n; rewrite -(count_map _ (pred1 t)) (pmap_filter (insubK _)). rewrite count_filter -(@eq_count _ (pred1 t)) => [|s /=]; last first. by rewrite isSome_insub; case: eqP=> // ->. elim: n t t_n => [|m IHm] [|x t] //= {}/IHm; move: (iter m _ _) => em IHm. transitivity (x \in T : nat); rewrite // -mem_enum codomE. elim: (fintype.enum T) (enum_uniq T) => //= y e IHe /andP[/negPf ney]. rewrite count_cat count_map inE /preim /= [in LHS]/eq_op /= eq_sym => /IHe->. by case: eqP => [->|_]; rewrite ?(ney, count_pred0, IHm). Qed. Lemma size_enum : size enum = #|T| ^ n. Proof. rewrite /= cardE size_pmap_sub; elim: n => //= m IHm. rewrite expnS /codom /image_mem; elim: {2 3}(fintype.enum T) => //= x e IHe. by rewrite count_cat {}IHe count_map IHm. Qed. End FinTuple. End FinTuple. Section UseFinTuple. Variables (n : nat) (T : finType). (* tuple_finMixin could, in principle, be made Canonical to allow for folding *) (* Finite.enum of a finite tuple type (see comments around eqE in eqtype.v), *) (* but in practice it will not work because the mixin_enum projector *) (* has been buried under an opaque alias, to avoid some performance issues *) (* during type inference. *) Definition tuple_finMixin := Eval hnf in FinMixin (@FinTuple.enumP n T). Canonical tuple_finType := Eval hnf in FinType (n.-tuple T) tuple_finMixin. Canonical tuple_subFinType := Eval hnf in [subFinType of n.-tuple T]. Lemma card_tuple : #|{:n.-tuple T}| = #|T| ^ n. Proof. by rewrite [#|_|]cardT enumT unlock FinTuple.size_enum. Qed. Lemma enum_tupleP (A : {pred T}) : size (enum A) == #|A|. Proof. by rewrite -cardE. Qed. Canonical enum_tuple A := Tuple (enum_tupleP A). Definition ord_tuple : n.-tuple 'I_n := Tuple (introT eqP (size_enum_ord n)). Lemma val_ord_tuple : val ord_tuple = enum 'I_n. Proof. by []. Qed. Lemma tuple_map_ord U (t : n.-tuple U) : t = [tuple of map (tnth t) ord_tuple]. Proof. by apply: val_inj => /=; rewrite map_tnth_enum. Qed. Lemma tnth_ord_tuple i : tnth ord_tuple i = i. Proof. apply: val_inj; rewrite (tnth_nth i) -(nth_map _ 0) ?size_tuple //. by rewrite /= enumT unlock val_ord_enum nth_iota. Qed. Section ImageTuple. Variables (T' : Type) (f : T -> T') (A : {pred T}). Canonical image_tuple : #|A|.-tuple T' := [tuple of image f A]. Canonical codom_tuple : #|T|.-tuple T' := [tuple of codom f]. End ImageTuple. Section MkTuple. Variables (T' : Type) (f : 'I_n -> T'). Definition mktuple := map_tuple f ord_tuple. Lemma tnth_mktuple i : tnth mktuple i = f i. Proof. by rewrite tnth_map tnth_ord_tuple. Qed. Lemma nth_mktuple x0 (i : 'I_n) : nth x0 mktuple i = f i. Proof. by rewrite -tnth_nth tnth_mktuple. Qed. End MkTuple. Lemma eq_mktuple T' (f1 f2 : 'I_n -> T') : f1 =1 f2 -> mktuple f1 = mktuple f2. Proof. by move=> eq_f; apply eq_from_tnth=> i; rewrite !tnth_map eq_f. Qed. End UseFinTuple. Notation "[ 'tuple' F | i < n ]" := (mktuple (fun i : 'I_n => F)) (at level 0, i at level 0, format "[ '[hv' 'tuple' F '/' | i < n ] ']'") : form_scope. Arguments eq_mktuple {n T'} [f1] f2 eq_f12. Section BseqDef. Variables (n : nat) (T : Type). Structure bseq_of : Type := Bseq {bseqval :> seq T; _ : size bseqval <= n}. Canonical bseq_subType := Eval hnf in [subType for bseqval]. Implicit Type bs : bseq_of. Lemma size_bseq bs : size bs <= n. Proof. by case: bs. Qed. Definition bseq bs mkB : bseq_of := mkB (let: Bseq _ bsP := bs return size bs <= n in bsP). Lemma bseqE bs : bseq (fun sP => @Bseq bs sP) = bs. Proof. by case: bs. Qed. End BseqDef. Canonical nil_bseq n T := Bseq (isT : @size T [::] <= n). Canonical cons_bseq n T x (t : bseq_of n T) := Bseq (valP t : size (x :: t) <= n.+1). Notation "n .-bseq" := (bseq_of n) (at level 2, format "n .-bseq") : type_scope. Notation "{ 'bseq' n 'of' T }" := (n.-bseq T : predArgType) (at level 0, only parsing) : type_scope. Notation "[ 'bseq' 'of' s ]" := (bseq (fun sP => @Bseq _ _ s sP)) (at level 0, format "[ 'bseq' 'of' s ]") : form_scope. Notation "[ 'bseq' x1 ; .. ; xn ]" := [bseq of x1 :: .. [:: xn] ..] (at level 0, format "[ 'bseq' '[' x1 ; '/' .. ; '/' xn ']' ]") : form_scope. Notation "[ 'bseq' ]" := [bseq of [::]] (at level 0, format "[ 'bseq' ]") : form_scope. Coercion bseq_of_tuple n T (t : n.-tuple T) : n.-bseq T := Bseq (eq_leq (size_tuple t)). Definition insub_bseq n T (s : seq T) : n.-bseq T := insubd [bseq] s. Lemma size_insub_bseq n T (s : seq T) : size (insub_bseq n s) <= size s. Proof. by rewrite /insub_bseq /insubd; case: insubP => // ? ? ->. Qed. Section CastBseq. Variable T : Type. Definition in_bseq (s : seq T) : (size s).-bseq T := Bseq (leqnn (size s)). Definition cast_bseq m n (eq_mn : m = n) bs := let: erefl in _ = n := eq_mn return n.-bseq T in bs. Definition widen_bseq m n (lemn : m <= n) (bs : m.-bseq T) : n.-bseq T := @Bseq n T bs (leq_trans (size_bseq bs) lemn). Lemma cast_bseq_id n (eq_nn : n = n) bs : cast_bseq eq_nn bs = bs. Proof. by rewrite (eq_axiomK eq_nn). Qed. Lemma cast_bseqK m n (eq_mn : m = n) : cancel (cast_bseq eq_mn) (cast_bseq (esym eq_mn)). Proof. by case: n / eq_mn. Qed. Lemma cast_bseqKV m n (eq_mn : m = n) : cancel (cast_bseq (esym eq_mn)) (cast_bseq eq_mn). Proof. by case: n / eq_mn. Qed. Lemma cast_bseq_trans m n p (eq_mn : m = n) (eq_np : n = p) bs : cast_bseq (etrans eq_mn eq_np) bs = cast_bseq eq_np (cast_bseq eq_mn bs). Proof. by case: n / eq_mn eq_np; case: p /. Qed. Lemma size_cast_bseq m n (eq_mn : m = n) (bs : m.-bseq T) : size (cast_bseq eq_mn bs) = size bs. Proof. by case: n / eq_mn. Qed. Lemma widen_bseq_id n (lenn : n <= n) (bs : n.-bseq T) : widen_bseq lenn bs = bs. Proof. exact: val_inj. Qed. Lemma cast_bseqEwiden m n (eq_mn : m = n) (bs : m.-bseq T) : cast_bseq eq_mn bs = widen_bseq (eq_leq eq_mn) bs. Proof. by case: n / eq_mn; rewrite widen_bseq_id. Qed. Lemma widen_bseqK m n (lemn : m <= n) (lenm : n <= m) : cancel (@widen_bseq m n lemn) (widen_bseq lenm). Proof. by move=> t; apply: val_inj. Qed. Lemma widen_bseq_trans m n p (lemn : m <= n) (lenp : n <= p) (bs : m.-bseq T) : widen_bseq (leq_trans lemn lenp) bs = widen_bseq lenp (widen_bseq lemn bs). Proof. exact/val_inj. Qed. Lemma size_widen_bseq m n (lemn : m <= n) (bs : m.-bseq T) : size (widen_bseq lemn bs) = size bs. Proof. by []. Qed. Lemma in_bseqE s : in_bseq s = s :> seq T. Proof. by []. Qed. Lemma widen_bseq_in_bseq n (bs : n.-bseq T) : widen_bseq (size_bseq bs) (in_bseq bs) = bs. Proof. exact: val_inj. Qed. End CastBseq. Section SeqBseq. Variables (n m : nat) (T U rT : Type). Implicit Type s : n.-bseq T. Lemma rcons_bseqP s x : size (rcons s x) <= n.+1. Proof. by rewrite size_rcons ltnS size_bseq. Qed. Canonical rcons_bseq s x := Bseq (rcons_bseqP s x). Lemma behead_bseqP s : size (behead s) <= n.-1. Proof. rewrite size_behead -!subn1; apply/leq_sub2r/size_bseq. Qed. Canonical behead_bseq s := Bseq (behead_bseqP s). Lemma belast_bseqP x s : size (belast x s) <= n. Proof. by rewrite size_belast; apply/size_bseq. Qed. Canonical belast_bseq x s := Bseq (belast_bseqP x s). Lemma cat_bseqP s (s' : m.-bseq T) : size (s ++ s') <= n + m. Proof. by rewrite size_cat; apply/leq_add/size_bseq/size_bseq. Qed. Canonical cat_bseq s (s' : m.-bseq T) := Bseq (cat_bseqP s s'). Lemma take_bseqP s : size (take m s) <= n. Proof. by rewrite size_take_min (leq_trans _ (size_bseq s)) // geq_minr. Qed. Canonical take_bseq s := Bseq (take_bseqP s). Lemma drop_bseqP s : size (drop m s) <= n - m. Proof. by rewrite size_drop; apply/leq_sub2r/size_bseq. Qed. Canonical drop_bseq s := Bseq (drop_bseqP s). Lemma rev_bseqP s : size (rev s) <= n. Proof. by rewrite size_rev size_bseq. Qed. Canonical rev_bseq s := Bseq (rev_bseqP s). Lemma rot_bseqP s : size (rot m s) <= n. Proof. by rewrite size_rot size_bseq. Qed. Canonical rot_bseq s := Bseq (rot_bseqP s). Lemma rotr_bseqP s : size (rotr m s) <= n. Proof. by rewrite size_rotr size_bseq. Qed. Canonical rotr_bseq s := Bseq (rotr_bseqP s). Lemma map_bseqP f s : @size rT (map f s) <= n. Proof. by rewrite size_map size_bseq. Qed. Canonical map_bseq f s := Bseq (map_bseqP f s). Lemma scanl_bseqP f x s : @size rT (scanl f x s) <= n. Proof. by rewrite size_scanl size_bseq. Qed. Canonical scanl_bseq f x s := Bseq (scanl_bseqP f x s). Lemma pairmap_bseqP f x s : @size rT (pairmap f x s) <= n. Proof. by rewrite size_pairmap size_bseq. Qed. Canonical pairmap_bseq f x s := Bseq (pairmap_bseqP f x s). Lemma allpairs_bseqP f s (s' : m.-bseq U) : @size rT (allpairs f s s') <= n * m. Proof. by rewrite size_allpairs; apply/leq_mul/size_bseq/size_bseq. Qed. Canonical allpairs_bseq f s (s' : m.-bseq U) := Bseq (allpairs_bseqP f s s'). Lemma sort_bseqP r s : size (sort r s) <= n. Proof. by rewrite size_sort size_bseq. Qed. Canonical sort_bseq r s := Bseq (sort_bseqP r s). Lemma bseq0 : all_equal_to ([bseq] : 0.-bseq T). Proof. by move=> s; apply: val_inj; case: s => [[]]. Qed. End SeqBseq. Definition bseq_eqMixin n (T : eqType) := Eval hnf in [eqMixin of n.-bseq T by <:]. Canonical bseq_eqType n (T : eqType) := Eval hnf in EqType (n.-bseq T) (bseq_eqMixin n T). Canonical bseq_predType n (T : eqType) := Eval hnf in PredType (fun t : n.-bseq T => mem_seq t). Lemma membsE n (T : eqType) (bs : n.-bseq T) : mem bs = mem (bseqval bs). Proof. by []. Qed. Definition bseq_choiceMixin n (T : choiceType) := [choiceMixin of n.-bseq T by <:]. Canonical bseq_choiceType n (T : choiceType) := Eval hnf in ChoiceType (n.-bseq T) (bseq_choiceMixin n T). Definition bseq_countMixin n (T : countType) := [countMixin of n.-bseq T by <:]. Canonical bseq_countType n (T : countType) := Eval hnf in CountType (n.-bseq T) (bseq_countMixin n T). Canonical bseq_subCountType n (T : countType) := Eval hnf in [subCountType of n.-bseq T]. Definition bseq_tagged_tuple n T (s : n.-bseq T) : {k : 'I_n.+1 & k.-tuple T} := Tagged _ (in_tuple s : (Ordinal (size_bseq s : size s < n.+1)).-tuple _). Arguments bseq_tagged_tuple {n T}. Definition tagged_tuple_bseq n T (t : {k : 'I_n.+1 & k.-tuple T}) : n.-bseq T := widen_bseq (leq_ord (tag t)) (tagged t). Arguments tagged_tuple_bseq {n T}. Lemma bseq_tagged_tupleK {n T} : cancel (@bseq_tagged_tuple n T) tagged_tuple_bseq. Proof. by move=> bs; apply/val_inj. Qed. Lemma tagged_tuple_bseqK {n T} : cancel (@tagged_tuple_bseq n T) bseq_tagged_tuple. Proof. move=> [[k lt_kn] t]; apply: eq_existT_curried => [|k_eq]; apply/val_inj. by rewrite /= size_tuple. by refine (let: erefl := k_eq in _). Qed. Lemma bseq_tagged_tuple_bij {n T} : bijective (@bseq_tagged_tuple n T). Proof. exact/Bijective/tagged_tuple_bseqK/bseq_tagged_tupleK. Qed. Lemma tagged_tuple_bseq_bij {n T} : bijective (@tagged_tuple_bseq n T). Proof. exact/Bijective/bseq_tagged_tupleK/tagged_tuple_bseqK. Qed. #[global] Hint Resolve bseq_tagged_tuple_bij tagged_tuple_bseq_bij : core. Definition bseq_finMixin n (T : finType) := CanFinMixin (@bseq_tagged_tupleK n T). Canonical bseq_finType n (T : finType) := Eval hnf in FinType (n.-bseq T) (bseq_finMixin n T). Canonical bseq_subFinType n (T : finType) := Eval hnf in [subFinType of n.-bseq T].