cyclic_pgroup_Aut_structure : forall (gT : finGroupType) (p : nat) (G : {group gT}), p.-group G -> cyclic G -> G != 1 -> let q := #|G| in let n := (logn p q).-1 in let A := Aut G in let P := 'O_p(A) in let F := 'O_p^'(A) in exists m : {perm gT} -> 'Z_q, [/\ [/\ {in A & G, forall (a : {perm gT}) (x : gT), x ^+ m a = a x}, m 1 = 1%R /\ {in A &, {morph m : a b / a * b >-> (a * b)%R}}, {in A &, injective m} /\ [seq m x | x in A] =i GRing.unit, forall k : nat, {in A, {morph m : a / a ^+ k >-> (a ^+ k)%R}} & {in A, {morph m : a / a^-1 >-> (a^-1)%R}}], [/\ abelian A, cyclic F, #|F| = p.-1 & [faithful F, on 'Ohm_1(G) | [Aut G]]] & if n == 0 then A = F else exists t : perm_for_finType gT, [/\ t \in A, #[t] = 2, m t = (-1)%R & if odd p then [/\ cyclic A /\ cyclic P, exists s : perm_for_finType gT, [/\ s \in A, #[s] = (p ^ n)%N, m s = (p.+1%:R)%R & P = <[s]>] & exists s0 : perm_for_finType gT, [/\ s0 \in A, #[s0] = p, m s0 = ((p ^ n).+1%:R)%R & 'Ohm_1(P) = <[s0]>]] else if n == 1 then A = <[t]> else exists s : perm_for_finType gT, [/\ s \in A, #[s] = (2 ^ n.-1)%N, m s = 5%R, <[s]> \x <[t]> = A & exists s0 : perm_for_finType gT, [/\ s0 \in A, #[s0] = 2, m s0 = ((2 ^ n).+1%:R)%R, m (s0 * t) = ((2 ^ n).-1%:R)%R & 'Ohm_1(<[s]>) = <[s0]>]]]]