(******************************************************************************) (* FILE : support.ml *) (* DESCRIPTION : Miscellaneous supporting definitions for Boyer-Moore *) (* style prover in HOL. *) (* *) (* READS FILES : *) (* WRITES FILES : *) (* *) (* AUTHOR : R.J.Boulton *) (* DATE : 6th June 1991 *) (* *) (* LAST MODIFIED : R.J.Boulton *) (* DATE : 21st June 1991 *) (* *) (* LAST MODIFIED : P. Papapanagiotou (University of Edinburgh) *) (* DATE : 2008 *) (******************************************************************************) let SUBST thl pat th = let eqs,vs = unzip thl in let gvs = map (genvar o type_of) vs in let gpat = subst (zip gvs vs) pat in let ls,rs = unzip (map (dest_eq o concl) eqs) in let ths = map (ASSUME o mk_eq) (zip gvs rs) in let th1 = ASSUME gpat in let th2 = SUBS ths th1 in let th3 = itlist DISCH (map concl ths) (DISCH gpat th2) in let th4 = INST (zip ls gvs) th3 in MP (rev_itlist (C MP) eqs th4) th;; let SUBST_CONV thvars template tm = let thms,vars = unzip thvars in let gvs = map (genvar o type_of) vars in let gtemplate = subst (zip gvs vars) template in SUBST (zip thms gvs) (mk_eq(template,gtemplate)) (REFL tm);; let CONTRAPOS = let a = `a:bool` and b = `b:bool` in let pth = ITAUT `(a ==> b) ==> (~b ==> ~a)` in fun th -> try let P,Q = dest_imp(concl th) in MP (INST [P,a; Q,b] pth) th with Failure _ -> failwith "CONTRAPOS";; let NOT_EQ_SYM = let pth = GENL [`a:A`; `b:A`] (CONTRAPOS(DISCH_ALL(SYM(ASSUME`a:A = b`)))) and aty = `:A` in fun th -> try let l,r = dest_eq(dest_neg(concl th)) in MP (SPECL [r; l] (INST_TYPE [type_of l,aty] pth)) th with Failure _ -> failwith "NOT_EQ_SYM";; let hash f g (x,y) = (f x,g y);; let hashI f (x,y) = hash f I (x,y);; let fst3 (x,_,_) = x;; let snd3 (_,x,_) = x;; let thd3 (_,_,x) = x;; let lcombinep (x,y) = List.combine x y;; let lcount x l = length ( filter ((=) x) l );; let list_mk_imp (tms,tm) = if (tms = []) then tm else try itlist (fun p q -> mk_imp (p,q)) tms tm with Failure _ -> failwith "list_mk_imp";; let INDUCT_TAC_ thm = MATCH_MP_TAC thm THEN CONJ_TAC THENL [ALL_TAC; GEN_TAC THEN GEN_TAC THEN DISCH_TAC] ;; (*--------------------------------------------------------------------------*) (* distinct : ''a list -> bool *) (* *) (* Checks whether the elements of a list are all distinct. *) (*--------------------------------------------------------------------------*) let rec distinct x = if (x = []) then true else not (mem (hd x) (tl x)) && distinct (tl x);; (*----------------------------------------------------------------------------*) (* Discriminator functions for T (true) and F (false) *) (*----------------------------------------------------------------------------*) let is_T = let T = `T` in fun tm -> tm = T and is_F = let F = `F` in fun tm -> tm = F;; (*--------------------------------------------------------------------------*) (* conj_list : term -> term list *) (* *) (* Splits a conjunction into conjuncts. Only recursively splits the right *) (* conjunct. *) (*--------------------------------------------------------------------------*) let rec conj_list tm = try( let (tm1,tm2) = dest_conj tm in tm1::(conj_list tm2) ) with Failure _ -> [tm];; (*--------------------------------------------------------------------------*) (* disj_list : term -> term list *) (* *) (* Splits a disjunction into disjuncts. Only recursively splits the right *) (* disjunct. *) (*--------------------------------------------------------------------------*) let rec disj_list tm = try( let (tm1,tm2) = dest_disj tm in tm1::(disj_list tm2) ) with Failure _ -> [tm];; (*----------------------------------------------------------------------------*) (* number_list : * list -> ( * # int) list *) (* *) (* Numbers a list of elements, *) (* e.g. [`a`;`b`;`c`] ---> [(`a`,1);(`b`,2);(`c`,3)]. *) (*----------------------------------------------------------------------------*) let number_list l = let rec number_list' n l = if ( l = [] ) then [] else (hd l,n)::(number_list' (n + 1) (tl l)) in number_list' 1 l;; (*----------------------------------------------------------------------------*) (* insert_on_snd : ( * # int) -> ( * # int) list -> ( * # int) list *) (* *) (* Insert a numbered element into an ordered list, *) (* e.g. insert_on_snd (`c`,3) [(`a`,1);(`b`,2);(`d`,4)] ---> *) (* [(`a`,1); (`b`,2); (`c`,3); (`d`,4)] *) (*----------------------------------------------------------------------------*) let rec insert_on_snd (x,n) l = if (l = []) then [(x,n)] else let h = hd l in if (n < snd h) then (x,n)::l else h::(insert_on_snd (x,n) (tl l));; (*----------------------------------------------------------------------------*) (* sort_on_snd : ( * # int) list -> ( * # int) list *) (* *) (* Sort a list of pairs, of which the second component is an integer, *) (* e.g. sort_on_snd [(`c`,3);(`d`,4);(`a`,1);(`b`,2)] ---> *) (* [(`a`,1); (`b`,2); (`c`,3); (`d`,4)] *) (*----------------------------------------------------------------------------*) let rec sort_on_snd l = if (l = []) then [] else (insert_on_snd (hd l) (sort_on_snd (tl l)));; (*----------------------------------------------------------------------------*) (* conj_list : term -> term list *) (* *) (* Splits a conjunction into conjuncts. Only recursively splits the right *) (* conjunct. *) (*----------------------------------------------------------------------------*) let rec conj_list tm = try (let (tm1,tm2) = dest_conj tm in tm1::(conj_list tm2)) with Failure _ -> [tm];; (*----------------------------------------------------------------------------*) (* disj_list : term -> term list *) (* *) (* Splits a disjunction into disjuncts. Only recursively splits the right *) (* disjunct. *) (*----------------------------------------------------------------------------*) let rec disj_list tm = try (let (tm1,tm2) = dest_disj tm in tm1::(disj_list tm2)) with Failure _ -> [tm];; (*----------------------------------------------------------------------------*) (* find_bm_terms : (term -> bool) -> term -> term list *) (* *) (* Function to find all subterms in a term that satisfy a given predicate p, *) (* breaking down terms as if they were Boyer-Moore logic expressions. *) (* In particular, the operator of a function application is only processed if *) (* it is of zero arity, i.e. there are no arguments. *) (*----------------------------------------------------------------------------*) let find_bm_terms p tm = try (let rec accum tml p tm = let tml' = if (p tm) then (tm::tml) else tml in ( let args = snd (strip_comb tm) in ( try ( rev_itlist (fun tm tml -> accum tml p tm) args tml' ) with Failure _ -> tml' ) ) in accum [] p tm ) with Failure _ -> failwith "find_bm_terms";; (*----------------------------------------------------------------------------*) (* remove_el : int -> * list -> ( * # * list) *) (* *) (* Removes a specified (by numerical position) element from a list. *) (*----------------------------------------------------------------------------*) let rec remove_el n l = if ((l = []) || (n < 1)) then failwith "remove_el" else if (n = 1) then (hd l,tl l) else let (x,l') = remove_el (n - 1) (tl l) in (x,(hd l)::l');;