(* ========================================================================= *) (* Explicit computations of group operations from extensible clauses. *) (* ========================================================================= *) needs "Library/grouptheory.ml";; needs "Library/ringtheory.ml";; let curve_clauses = ref ([]:thm list) and curvezero_clauses = ref ([]:thm list) and curveneg_clauses = ref ([]:thm list) and curveadd_clauses = ref ([]:thm list) and ecgroup_carriers = ref ([]:thm list) and ecgroup_ids = ref ([]:thm list) and ecgroup_invs = ref ([]:thm list) and ecgroup_muls = ref ([]:thm list);; (* ------------------------------------------------------------------------- *) (* Augment store of clauses, both curve types and actual specific curves. *) (* ------------------------------------------------------------------------- *) let add_curve th = (curve_clauses := insert th (!curve_clauses));; let add_curvezero th = (curvezero_clauses := insert th (!curvezero_clauses));; let add_curveneg th = (curveneg_clauses := insert th (!curveneg_clauses));; let add_curveadd th = (curveadd_clauses := insert th (!curveadd_clauses));; let add_ecgroup defs th = let [cth;ith;nth;ath] = CONJUNCTS(PURE_REWRITE_RULE defs th) in (ecgroup_carriers := insert cth (!ecgroup_carriers); ecgroup_ids := insert ith (!ecgroup_ids); ecgroup_invs := insert nth (!ecgroup_invs); ecgroup_muls := insert ath (!ecgroup_muls));; (* ------------------------------------------------------------------------- *) (* The actual conversions. *) (* ------------------------------------------------------------------------- *) let ECGROUP_CARRIER_CONV tm = (GEN_REWRITE_CONV RAND_CONV (!ecgroup_carriers) THENC GEN_REWRITE_CONV I [IN] THENC GEN_REWRITE_CONV I (!curve_clauses) THENC REWRITE_CONV[IN_INTEGER_MOD_RING_CARRIER] THENC DEPTH_CONV(INTEGER_MOD_RING_RED_CONV ORELSEC INT_RED_CONV)) tm;; let ECGROUP_ID_CONV tm = (GEN_REWRITE_CONV I (!ecgroup_ids) THENC TRY_CONV(GEN_REWRITE_CONV I (!curvezero_clauses) THENC DEPTH_CONV INTEGER_MOD_RING_RED_CONV)) tm;; let ECGROUP_INV_CONV tm = (GEN_REWRITE_CONV RATOR_CONV (!ecgroup_invs) THENC GEN_REWRITE_CONV I (!curveneg_clauses) THENC DEPTH_CONV INTEGER_MOD_RING_RED_CONV) tm;; let ECGROUP_MUL_CONV tm = (GEN_REWRITE_CONV (RATOR_CONV o RATOR_CONV) (!ecgroup_muls) THENC GEN_REWRITE_CONV I (!curveadd_clauses) THENC DEPTH_CONV(INTEGER_MOD_RING_RED_CONV ORELSEC INT_RED_CONV) THENC REPEATC(let_CONV THENC DEPTH_CONV INTEGER_MOD_RING_RED_CONV)) tm;; let ECGROUP_POW_CONV = let pth = prove (`!G x m n. x IN group_carrier G ==> group_pow G x (2 * n) = group_pow G (group_mul G x x) n`, SIMP_TAC[GSYM GROUP_POW_2; GROUP_POW_POW]) and dth = prove (`NUMERAL(BIT0 n) = 2 * NUMERAL n`, REWRITE_TAC[MULT_2] THEN REWRITE_TAC[BIT0] THEN REWRITE_TAC[NUMERAL]) in let num_half_CONV = GEN_REWRITE_CONV I [dth] in let conv_0 tm = (GEN_REWRITE_CONV I [CONJUNCT1 group_pow] THENC ECGROUP_ID_CONV) tm and conv_1 = GEN_REWRITE_CONV I [CONJUNCT2 group_pow] and conv_2 = PART_MATCH (lhand o rand) pth in let rec conv tm = match tm with Comb(Comb(Comb(Const("group_pow",_),g),x),ntm) -> let n = dest_numeral ntm in if n =/ num_0 then conv_0 tm else if mod_num n num_2 =/ num_1 then (RAND_CONV num_CONV THENC conv_1 THENC RAND_CONV conv THENC ECGROUP_MUL_CONV) tm else let th1 = RAND_CONV num_half_CONV tm in let th2 = conv_2 (rand(concl th1)) in let th3 = MP th2 (EQT_ELIM((ECGROUP_CARRIER_CONV(lhand(concl th2))))) in let th4 = TRANS th1 th3 in CONV_RULE(RAND_CONV(LAND_CONV ECGROUP_MUL_CONV THENC conv)) th4 | _ -> failwith "ECGROUP_POW_CONV" in conv;;