(* ========================================================================= *) (* Isomorphic mappings from Montgomery to Weierstrass form and back again. *) (* ========================================================================= *) needs "EC/montgomery.ml";; needs "EC/weierstrass.ml";; (* ------------------------------------------------------------------------- *) (* Map from Montgomery to Weierstrass by (x,y) |-> ((x + A / 3) / B, y / B) *) (* and from Weierstrass to Montgomery by (x,y) |-> (B * x - A / 3, B * y) *) (* and thus Montgomery(A,B) curve gives Weierstrass(a,b) where *) (* *) (* a = (1 - A^2 / 3) / B^2 *) (* b = A * (2 * A^2 - 9) / (27 * B^3) *) (* ------------------------------------------------------------------------- *) let wcurve_of_mcurve = define `wcurve_of_mcurve(f,(a:A),b) = (f, ring_div f (ring_sub f (ring_of_num f 1) (ring_div f (ring_pow f a 2) (ring_of_num f 3))) (ring_pow f b 2), ring_div f (ring_mul f a (ring_sub f (ring_mul f (ring_of_num f 2) (ring_pow f a 2)) (ring_of_num f 9))) (ring_mul f (ring_of_num f 27) (ring_pow f b 3)))`;; let WCURVE_OF_MCURVE_NONSINGULAR_EQ = prove (`!f a b:A. field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) ==> (weierstrass_nonsingular(wcurve_of_mcurve(f,a,b)) <=> ~(ring_pow f a 2 = ring_of_num f 4))`, REWRITE_TAC[FIELD_CHAR_NOT23] THEN REWRITE_TAC[montgomery_nonsingular; weierstrass_nonsingular; wcurve_of_mcurve] THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let WCURVE_OF_MCURVE_NONSINGULAR = prove (`!f a b:A. field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_nonsingular(f,a,b) ==> weierstrass_nonsingular(wcurve_of_mcurve(f,a,b))`, SIMP_TAC[montgomery_nonsingular; DE_MORGAN_THM; WCURVE_OF_MCURVE_NONSINGULAR_EQ]);; let weierstrass_of_montgomery = define `weierstrass_of_montgomery(f,a:A,b) NONE = NONE /\ weierstrass_of_montgomery(f,a:A,b) (SOME(x,y)) = SOME(ring_div f (ring_add f x (ring_div f a (ring_of_num f 3))) b, ring_div f y b)`;; let montgomery_of_weierstrass = define `montgomery_of_weierstrass(f,a:A,b) NONE = NONE /\ montgomery_of_weierstrass(f,a:A,b) (SOME(x,y)) = SOME(ring_sub f (ring_mul f b x) (ring_div f a (ring_of_num f 3)), ring_mul f b y)`;; let MONTGOMERY_OF_WEIERSTRASS_OF_MONTGOMERY = prove (`!f a (b:A) p. field f /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\ montgomery_point f p ==> montgomery_of_weierstrass(f,a,b) (weierstrass_of_montgomery(f,a,b) p) = p`, REWRITE_TAC[FIELD_CHAR_NOT3] THEN REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN REWRITE_TAC[montgomery_of_weierstrass; weierstrass_of_montgomery] THEN REWRITE_TAC[montgomery_point; option_INJ; PAIR_EQ] THEN REPEAT STRIP_TAC THEN FIELD_TAC);; let WEIERSTRASS_OF_MONTGOMERY_OF_WEIERSTRASS = prove (`!f a (b:A) p. field f /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\ weierstrass_point f p ==> weierstrass_of_montgomery(f,a,b) (montgomery_of_weierstrass(f,a,b) p) = p`, REWRITE_TAC[FIELD_CHAR_NOT3] THEN REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN REWRITE_TAC[montgomery_of_weierstrass; weierstrass_of_montgomery] THEN REWRITE_TAC[weierstrass_point; option_INJ; PAIR_EQ] THEN REPEAT STRIP_TAC THEN FIELD_TAC);; let WEIERSTRASS_OF_MONTGOMERY = prove (`!f (a:A) b p. field f /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_curve(f,a,b) p ==> weierstrass_curve (wcurve_of_mcurve(f,a,b)) (weierstrass_of_montgomery(f,a,b) p)`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN REWRITE_TAC[montgomery_curve; weierstrass_curve; weierstrass_of_montgomery; wcurve_of_mcurve] THEN REPEAT GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT3] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let MONTGOMERY_OF_WEIERSTRASS = prove (`!f (a:A) b p. field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\ weierstrass_curve (wcurve_of_mcurve(f,a,b)) p ==> montgomery_curve(f,a,b) (montgomery_of_weierstrass(f,a,b) p)`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN REWRITE_TAC[montgomery_curve; weierstrass_curve; montgomery_of_weierstrass; wcurve_of_mcurve] THEN REPEAT GEN_TAC THEN REWRITE_TAC[FIELD_CHAR_NOT23] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let WEIERSTRASS_OF_MONTGOMERY_NEG = prove (`!f (a:A) b p. field f /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\ montgomery_curve(f,a,b) p ==> weierstrass_of_montgomery(f,a,b) (montgomery_neg(f,a,b) p) = weierstrass_neg (wcurve_of_mcurve(f,a,b)) (weierstrass_of_montgomery(f,a,b) p)`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN REWRITE_TAC[montgomery_curve; weierstrass_of_montgomery; montgomery_of_weierstrass; wcurve_of_mcurve; montgomery_neg; weierstrass_neg] THEN REPEAT GEN_TAC THEN REWRITE_TAC[option_INJ; PAIR_EQ; FIELD_CHAR_NOT3] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let WEIERSTRASS_OF_MONTGOMERY_ADD = prove (`!f (a:A) b p q. field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ ~(b = ring_0 f) /\ montgomery_curve(f,a,b) p /\ montgomery_curve(f,a,b) q ==> weierstrass_of_montgomery(f,a,b) (montgomery_add(f,a,b) p q) = weierstrass_add (wcurve_of_mcurve(f,a,b)) (weierstrass_of_montgomery(f,a,b) p) (weierstrass_of_montgomery(f,a,b) q)`, REWRITE_TAC[FORALL_OPTION_THM; FORALL_PAIR_THM] THEN REWRITE_TAC[montgomery_curve; weierstrass_of_montgomery; montgomery_of_weierstrass; wcurve_of_mcurve; montgomery_add; weierstrass_add] THEN REPEAT GEN_TAC THEN REWRITE_TAC[option_INJ; PAIR_EQ] THEN REWRITE_TAC[FIELD_CHAR_NOT23] THEN REPEAT(GEN_TAC ORELSE CONJ_TAC) THEN REPEAT(COND_CASES_TAC THEN ASM_REWRITE_TAC[weierstrass_of_montgomery]) THEN REPEAT LET_TAC THEN ASM_REWRITE_TAC[montgomery_of_weierstrass; weierstrass_of_montgomery] THEN REWRITE_TAC[option_INJ; option_DISTINCT; PAIR_EQ] THEN REPEAT STRIP_TAC THEN TRY RING_CARRIER_TAC THEN FIELD_TAC THEN NOT_RING_CHAR_DIVIDES_TAC);; let GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP = prove (`!f a (b:A). field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_nonsingular(f,a,b) ==> group_isomorphisms (montgomery_group(f,a,b),weierstrass_group(wcurve_of_mcurve(f,a,b))) (weierstrass_of_montgomery(f,a,b), montgomery_of_weierstrass(f,a,b))`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL (striplist dest_pair (rand(concl wcurve_of_mcurve))) WEIERSTRASS_GROUP) THEN REWRITE_TAC[GSYM wcurve_of_mcurve] THEN ANTS_TAC THENL [ASM_SIMP_TAC[WCURVE_OF_MCURVE_NONSINGULAR] THEN REPEAT CONJ_TAC THEN RING_CARRIER_TAC; STRIP_TAC] THEN MP_TAC(ISPECL [`f:A ring`; `a:A`; `b:A`] MONTGOMERY_GROUP) THEN ASM_REWRITE_TAC[] THEN STRIP_TAC THEN ASM_REWRITE_TAC[GROUP_ISOMORPHISMS; GROUP_HOMOMORPHISM] THEN REWRITE_TAC[SUBSET; FORALL_IN_IMAGE] THEN ASM_REWRITE_TAC[IN] THEN RULE_ASSUM_TAC(REWRITE_RULE[montgomery_nonsingular]) THEN SUBGOAL_THEN `(!x. weierstrass_curve (wcurve_of_mcurve (f,(a:A),b)) x ==> weierstrass_point f x) /\ (!y. montgomery_curve (f,a,b) y ==> montgomery_point f y)` STRIP_ASSUME_TAC THENL [REWRITE_TAC[FORALL_PAIR_THM; FORALL_OPTION_THM] THEN SIMP_TAC[weierstrass_curve; weierstrass_point; wcurve_of_mcurve; montgomery_curve; montgomery_point]; ALL_TAC] THEN ASM_SIMP_TAC[WEIERSTRASS_OF_MONTGOMERY; WEIERSTRASS_OF_MONTGOMERY_ADD; MONTGOMERY_OF_WEIERSTRASS; MONTGOMERY_OF_WEIERSTRASS_OF_MONTGOMERY; WEIERSTRASS_OF_MONTGOMERY_OF_WEIERSTRASS]);; let GROUP_ISOMORPHISMS_WEIERSTRASS_MONTGOMERY_GROUP = prove (`!f a (b:A). field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_nonsingular(f,a,b) ==> group_isomorphisms (weierstrass_group(wcurve_of_mcurve(f,a,b)),montgomery_group(f,a,b)) (montgomery_of_weierstrass(f,a,b), weierstrass_of_montgomery(f,a,b))`, ONCE_REWRITE_TAC[GROUP_ISOMORPHISMS_SYM] THEN ACCEPT_TAC GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP);; let ISOMORPHIC_MONTGOMERY_WEIERSTRASS_GROUP = prove (`!f a (b:A). field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_nonsingular(f,a,b) ==> (montgomery_group(f,a,b)) isomorphic_group (weierstrass_group(wcurve_of_mcurve(f,a,b)))`, REPEAT GEN_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP GROUP_ISOMORPHISMS_MONTGOMERY_WEIERSTRASS_GROUP) THEN MESON_TAC[GROUP_ISOMORPHISMS_IMP_ISOMORPHISM; isomorphic_group]);; let ISOMORPHIC_WEIERSTRASS_MONTGOMERY_GROUP = prove (`!f a (b:A). field f /\ ~(ring_char f = 2) /\ ~(ring_char f = 3) /\ a IN ring_carrier f /\ b IN ring_carrier f /\ montgomery_nonsingular(f,a,b) ==> (weierstrass_group(wcurve_of_mcurve(f,a,b))) isomorphic_group (montgomery_group(f,a,b))`, ONCE_REWRITE_TAC[ISOMORPHIC_GROUP_SYM] THEN ACCEPT_TAC ISOMORPHIC_MONTGOMERY_WEIERSTRASS_GROUP);;