(* ========================================================================= *) (* *) (* Quantum optics library: single mode electromagnetic field. *) (* *) (* (c) Copyright, Mohamed Yousri Mahmoud , 2012-2014 *) (* Hardware Verification Group, *) (* Concordia University *) (* *) (* Contact: , *) (* *) (* Last update: April 18, 2016 *) (* *) (* ========================================================================= *) needs "Functionspaces/cfunspace.ml";; (*****************************************************************************) (* SQUARE INTEGRABLE FUNCTIONS (L2) *) (*****************************************************************************) parse_as_infix("complex_measurable_on",(12,"right"));; let complex_measurable = new_definition `f complex_measurable_on s <=> (\x. Re (f x)) real_measurable_on s /\ (\x. Im (f x)) real_measurable_on s`;; let sq_integrable = new_specification ["sq_integrable"] (prove(`?s. !f. f IN s <=> f complex_measurable_on (:real) /\ (\x. norm (f x) pow 2) real_integrable_on (:real)`, EXISTS_TAC `{f| f complex_measurable_on (:real) /\ (\x. norm (f x) pow 2) real_integrable_on (:real)}` THEN SIMP_TAC[IN_ELIM_THM]));; let r_inprod = new_definition `r_inprod f g = complex(real_integral (:real) (\x:real. Re (cnj (f x) * (g x))), real_integral (:real) (\x. Im (cnj (f x) * (g x))) )`;; (*****************************************************************************) (*We will prove each property of the inner space in the following *) (*theorems. We will conclude all properties in one theorem at the very end *) (*****************************************************************************) let FRECHET_REAL_DERIVATIVE_UNIQUE_WITHIN_CLOSED_INTERVAL = prove (`!f f' f'' x a b. a < b /\ x IN real_interval[a,b] /\ (f has_real_derivative f') (atreal x within (real_interval[a,b])) /\ (f has_real_derivative f'') (atreal x within (real_interval[a,b])) ==> f' = f''`, let tem = REWRITE_RULE[MESON[] `A/\B/\C ==> Q <=> C ==> A /\ B ==> Q `] FRECHET_DERIVATIVE_UNIQUE_WITHIN_CLOSED_INTERVAL in REPEAT GEN_TAC THEN REWRITE_TAC[HAS_REAL_FRECHET_DERIVATIVE_WITHIN ] THEN REWRITE_TAC[MESON[] `A/\B/\C ==> Q <=> C ==> A /\ B ==> Q `; IMAGE_LIFT_REAL_INTERVAL ] THEN DISCH_THEN (ASSUME_TAC o (MATCH_MP tem)) THEN POP_ASSUM(ASSUME_TAC o( SIMP_RULE[LIFT_IN_INTERVAL ;DIMINDEX_1;LIFT_DROP; ARITH_RULE`x <= i /\ i <= x <=> i=(x:num)`;lift;LAMBDA_BETA])) THEN DISCH_THEN (fun th1 -> POP_ASSUM (MP_TAC o (SIMP_RULE[GSYM LIFT_EQ_CMUL; LIFT_EQ])o(Pa.SPEC `vec 1:`)o (SIMP_RULE[th1;FUN_EQ_THM]))) THEN REWRITE_TAC[]);; let cfun_almost_zero = new_specification ["cfun_almost_zero"] (prove(`?f.(?k. real_negligible k /\ !x. ~(x IN k) ==> f x = Cx(&0))`, Pa.EXISTS_TAC `cfun_zero:` THEN REWRITE_TAC[cfun_zero;K_THM]THEN Pa.EXISTS_TAC `{}:` THEN REWRITE_TAC[REAL_NEGLIGIBLE_EMPTY]));; let is_almost_zero = new_definition `is_almost_zero1 f = !a b. (?k. real_negligible k /\ !x. x IN real_interval[a,b] DIFF k ==> f x = Cx(&0))`;; let REAL_INTEGRA_ZERO_SUBINTERVALS = prove (`!f. (!x. &0 <= f x) /\ (f has_real_integral &0) (:real) ==> !a b. (f has_real_integral &0) (real_interval[a,b])`, REPEAT STRIP_TAC THEN Pa.ASM_CASES_TAC `b<=a:` THENL[ASM_SIMP_TAC[HAS_REAL_INTEGRAL_NULL];ALL_TAC] THEN Pa.SUBGOAL_THEN `!a b. f real_integrable_on (real_interval[a,b]):` ASSUME_TAC THENL[ RULE_ASSUM_TAC(REWRITE_RULE[HAS_REAL_INTEGRAL_ALT;SET_RULE `x IN (:real)`;ETA_AX]) THEN ASM_REWRITE_TAC[];ALL_TAC] THEN MP_TAC (Pa.SPECL [`f:`;`real_interval[a,b]:`] REAL_INTEGRAL_POS) THEN ASM_SIMP_TAC[] THEN MP_TAC (Pa.SPECL [`f:`;`real_interval[a,b]:`;`(:real):`] REAL_INTEGRAL_SUBSET_LE) THEN RULE_ASSUM_TAC(REWRITE_RULE[HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL]) THEN IMP_REWRITE_TAC[SET_RULE `!s. ~(s={}) ==> s SUBSET (:real)`; REAL_INTERVAL_NE_EMPTY;GSYM REAL_LE_ANTISYM; HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL] THEN ASM_SIMP_TAC[REAL_ARITH `~(b <= a) ==> a <= b`]);; let REAL_POW2_0 = REWRITE_RULE[REAL_ADD_LID;REAL_POW_ZERO; ARITH] (SPEC `&0` REAL_SOS_EQ_0);; let RINPROD_ALMOST_ZERO = prove( `!f. f IN sq_integrable ==> (r_inprod f f = Cx (&0) <=> is_almost_zero1 f)`, REWRITE_TAC[sq_integrable;r_inprod;r_inprod;RE_CX;IM_CX;GSYM CX_DEF; COMPLEX_MUL_CNJ;GSYM CX_POW;REAL_INTEGRAL_0; CX_INJ] THEN REPEAT STRIP_TAC THEN EQ_TAC THENL[ POP_ASSUM MP_TAC THEN REWRITE_TAC[MESON[] `P==>Q==>A <=> P/\Q ==>A`] THEN DISCH_THEN (fun thm -> ASSUME_TAC(REWRITE_RULE [GSYM HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL] thm) THEN MP_TAC thm) THEN Pa.SUBGOAL_THEN `!a b. (\x. norm (f x) pow 2) real_integrable_on (real_interval[a,b]):` ASSUME_TAC THENL[ RULE_ASSUM_TAC(REWRITE_RULE[HAS_REAL_INTEGRAL_ALT;SET_RULE `x IN (:real)`;ETA_AX]) THEN ASM_REWRITE_TAC[];ALL_TAC] THEN MP_TAC (Pa.SPEC `(\x. norm ((f:real->complex) x) pow 2):` HAS_REAL_DERIVATIVE_INDEFINITE_INTEGRAL) THEN ASM_REWRITE_TAC[] THEN MP_TAC (Pa.SPEC `(\x. norm ((f:real->complex) x) pow 2):` REAL_INTEGRA_ZERO_SUBINTERVALS) THEN ASM_SIMP_TAC[REAL_LE_POW_2;HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL] THEN DISCH_TAC THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `(!a b. ?k. real_negligible k /\ (!x. x IN real_interval [a,b] DIFF k ==> ((\x. &0) has_real_derivative norm ((f:real->complex) x) pow 2) (atreal x within real_interval [a,b]))) ==> (!a b. ?k. real_negligible k /\ (!x. x IN real_interval [a,b] DIFF k ==> norm (f x) pow 2 = &0))` ASSUME_TAC THENL[REPEAT STRIP_TAC THEN POP_ASSUM (MP_TAC o SPECL [`a:real`;`b:real`]) THEN REPEAT STRIP_TAC THEN Pa.ASM_CASES_TAC `a < b:` THENL[ Pa.EXISTS_TAC `k:` THEN ASM_SIMP_TAC[] THEN ASSUME_TAC (Pa.SPECL [`&0:`;`atreal x within real_interval [a,b]:`] HAS_REAL_DERIVATIVE_CONST) THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC FRECHET_REAL_DERIVATIVE_UNIQUE_WITHIN_CLOSED_INTERVAL THEN MAP_EVERY Pa.EXISTS_TAC [`(\x. &0):`;`x':`;`a:`;`b:`] THEN ASM_SIMP_TAC[] THEN ASM_MESON_TAC[IN_DIFF ]; Pa.EXISTS_TAC `{a}:` THEN ASM_SIMP_TAC[REAL_NEGLIGIBLE_FINITE ;FINITE_SING;real_interval;IN_ELIM_THM;IN_DIFF;IN_SING] THEN ASM_MESON_TAC[REAL_FIELD `~(a < b) /\ (a <= x /\ x <= b) /\ ~(x = a) <=> F`]];ALL_TAC] THEN DISCH_THEN (fun th -> POP_ASSUM (fun th1 -> ASSUME_TAC (SIMP_RULE[REAL_POW2_0;COMPLEX_NORM_ZERO ](MATCH_MP th1 th)))) THEN ASM_SIMP_TAC[is_almost_zero];ALL_TAC] THEN REWRITE_TAC[is_almost_zero] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN REWRITE_TAC[HAS_REAL_INTEGRAL_ALT;SET_RULE `x IN (:real)`] THEN Pa.SUBGOAL_THEN `!a b. ((\x. norm (f x) pow 2) has_real_integral &0) (real_interval [a,b]):` ASSUME_TAC THENL[ IMP_REWRITE_TAC[HAS_REAL_INTEGRAL_NEGLIGIBLE;REAL_POW2_0;COMPLEX_NORM_ZERO ]; ALL_TAC] THEN REPEAT STRIP_TAC THENL [ASM_MESON_TAC[HAS_REAL_INTEGRAL_INTEGRABLE]; EXISTS_TAC `&1` THEN ASM_SIMP_TAC [REAL_ARITH `&0 < &1`] THEN REPEAT STRIP_TAC THEN IMP_REWRITE_TAC[REAL_INTEGRAL_UNIQUE] THEN EXISTS_TAC `&0` THEN ASM_SIMP_TAC [REAL_ARITH `&0 - &0 = &0`;REAL_ABS_NUM]]);; let ALOMST_ZERO_ZERO = prove (`!f g. is_almost_zero1 f ==> r_inprod g f = Cx(&0)`, REWRITE_TAC[r_inprod;COMPLEX_EQ;CX_DEF;RE;IM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_UNIQUE THEN REWRITE_TAC[HAS_REAL_INTEGRAL_ALT;SET_RULE `x IN (:real)`] THEN RULE_ASSUM_TAC(REWRITE_RULE[is_almost_zero]) THENL[Pa.SUBGOAL_THEN `!a b. ((\x. Re (cnj (g x) * f x)) has_real_integral &0) (real_interval [a,b]):` ASSUME_TAC THENL[ REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_NEGLIGIBLE THEN POP_ASSUM ( (X_CHOOSE_TAC `s:real->bool`) o SPEC_ALL) THEN Pa.EXISTS_TAC `s:` THEN ASM_SIMP_TAC[COMPLEX_MUL_RZERO;RE_CX;IM_CX];ALL_TAC]; Pa.SUBGOAL_THEN `!a b. ((\x. Im (cnj (g x) * f x)) has_real_integral &0) (real_interval [a,b]):` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC HAS_REAL_INTEGRAL_NEGLIGIBLE THEN POP_ASSUM ( (X_CHOOSE_TAC `s:real->bool`) o SPEC_ALL) THEN Pa.EXISTS_TAC `s:` THEN ASM_SIMP_TAC[COMPLEX_MUL_RZERO;RE_CX;IM_CX];ALL_TAC]] THEN ASM_MESON_TAC[REAL_SUB_RZERO;HAS_REAL_INTEGRAL_INTEGRABLE_INTEGRAL;REAL_ABS_0]);; let RINPROD_ZERO_EQ = prove (`!x y. x IN sq_integrable /\ r_inprod x x = Cx(&0) ==> r_inprod y x = Cx(&0)`, MESON_TAC[ALOMST_ZERO_ZERO;RINPROD_ALMOST_ZERO]);; let SQ_RULE = REAL_FIELD `(a+b) pow 2 = a pow 2 + b pow 2 + &2 * a * b`;; let SQ_RULE_SUB = REAL_FIELD `(a-b) pow 2 = a pow 2 + b pow 2 - &2 * a * b`;; let ABS_POW_2 = MESON[REAL_ABS_REFL;REAL_LE_POW_2] `!x. abs (x pow 2) = x pow 2`;; let SQ_INTEGRABLE_SUBSPACE = prove( `is_cfun_subspace sq_integrable`, REWRITE_TAC[is_cfun_subspace;sq_integrable;complex_measurable;cfun_zero; K_THM;RE_CX;IM_CX;REAL_MEASURABLE_ON_0;COMPLEX_NORM_0;REAL_POW_ZERO; ARITH;REAL_INTEGRABLE_0] THEN REPEAT STRIP_TAC THENL[ ASM_SIMP_TAC[CFUN_SMUL;REAL_MEASURABLE_ON_LMUL;RE;complex_mul; REAL_MEASURABLE_ON_SUB] ;ASM_SIMP_TAC[CFUN_SMUL;REAL_MEASURABLE_ON_LMUL;IM;complex_mul; REAL_MEASURABLE_ON_ADD] ;ASM_SIMP_TAC[CFUN_SMUL;COMPLEX_NORM_MUL;REAL_POW_MUL;REAL_INTEGRABLE_LMUL] ;ASM_SIMP_TAC[CFUN_ADD_THM;RE_ADD;REAL_MEASURABLE_ON_ADD] ;ASM_SIMP_TAC[CFUN_ADD_THM;IM_ADD;REAL_MEASURABLE_ON_ADD] ;RULE_ASSUM_TAC(REWRITE_RULE[SQ_RULE;COMPLEX_SQNORM]) THEN ASM_SIMP_TAC[CFUN_ADD_THM;complex_add;COMPLEX_SQNORM;RE;IM;SQ_RULE; REAL_FIELD `((a1:real)+b1+c1) + a2 + b2 + c2 = (a1+a2) + (b1+b2) + c1+ c2`] THEN MATCH_MP_TAC REAL_INTEGRABLE_ADD THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_INTEGRABLE_ADD THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC REAL_INTEGRABLE_ADD THEN REPEAT STRIP_TAC THENL [MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.( Re (x x') pow 2 + Im (x x') pow 2) + (Re (y x') pow 2 + Im (y x') pow 2):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_ABS_MUL;REAL_ABS_NUM] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (a1+a2-c1)+b1+b2`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2]; ALL_TAC] THEN MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.( Re (x x') pow 2 + Im (x x') pow 2) + (Re (y x') pow 2 + Im (y x') pow 2):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_ABS_MUL;REAL_ABS_NUM] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (a1+a2)+(b1+b2-c1)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2]]);; let RINPROD_SELF_POS = prove( `!f. f IN sq_integrable ==> real (r_inprod f f) /\ &0 <= real_of_complex (r_inprod f f)`, REWRITE_TAC[sq_integrable;REAL;r_inprod;COMPLEX_MUL_CNJ;RE_CX;IM_CX;GSYM CX_POW ;RE;IM;REAL_INTEGRAL_0;GSYM CX_DEF;REAL_OF_COMPLEX_CX] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_INTEGRAL_POS THEN ASM_REWRITE_TAC[REAL_LE_POW_2]);; let RINPROD_CNJ = prove( `!f g. f IN sq_integrable /\ g IN sq_integrable ==> cnj (r_inprod f g) = r_inprod g f`, REWRITE_TAC[sq_integrable;complex_measurable;RE;IM;cnj;COMPLEX_SQNORM; r_inprod;complex_mul] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[PAIR_EQ] THEN REPEAT STRIP_TAC THENL[AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN REAL_ARITH_TAC;ALL_TAC] THEN Pa.SUBGOAL_THEN `(\x. Re (f x) * Im (g x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (f x') pow 2 + Im (f x') pow 2) + (Re (g x') pow 2 + Im (g x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (a1+b2-c1)+(b1+a2)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN Pa.SUBGOAL_THEN `(\x. Im (f x) * Re (g x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (f x') pow 2 + Im (f x') pow 2) + (Re (g x') pow 2 + Im (g x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (b1+a2-c1)+(b2+a1)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN ASM_SIMP_TAC[GSYM REAL_NEG_LMUL;REAL_INTEGRABLE_SUB;REAL_INTEGRABLE_NEG;REAL_INTEGRABLE_ADD; GSYM REAL_INTEGRAL_NEG] THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN REAL_ARITH_TAC);; let RINPROD_RSMUL = prove( `!f g a. f IN sq_integrable /\ g IN sq_integrable ==> r_inprod f (a%g) = a * r_inprod f g`, REWRITE_TAC[sq_integrable;complex_measurable;CFUN_SMUL;RE;IM;cnj;COMPLEX_SQNORM; r_inprod;complex_mul] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[PAIR_EQ] THEN Pa.SUBGOAL_THEN `(\x. Re (f x) * Im (g x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (f x') pow 2 + Im (f x') pow 2) + (Re (g x') pow 2 + Im (g x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (a1+b2-c1)+(b1+a2)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN Pa.SUBGOAL_THEN `(\x. Im (f x) * Re (g x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (f x') pow 2 + Im (f x') pow 2) + (Re (g x') pow 2 + Im (g x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (b1+a2-c1)+(b2+a1)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN Pa.SUBGOAL_THEN `(\x. Re (f x) * Re (g x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (f x') pow 2 + Im (f x') pow 2) + (Re (g x') pow 2 + Im (g x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (a1+a2-c1)+(b2+b1)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN Pa.SUBGOAL_THEN `(\x. Im (f x) * Im (g x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (f x') pow 2 + Im (f x') pow 2) + (Re (g x') pow 2 + Im (g x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (b1+b2-c1)+(a2+a1)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN IMP_REWRITE_TAC[GSYM REAL_NEG_LMUL;REAL_INTEGRABLE_SUB; REAL_INTEGRABLE_NEG;REAL_INTEGRABLE_ADD; GSYM REAL_INTEGRAL_LMUL;REAL_INTEGRABLE_LMUL; GSYM REAL_INTEGRAL_SUB;GSYM REAL_INTEGRAL_ADD] THEN REPEAT STRIP_TAC THEN ((AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN REAL_ARITH_TAC) ORELSE (MATCH_MP_TAC REAL_INTEGRABLE_LMUL ORELSE ALL_TAC)) THEN (MATCH_MP_TAC REAL_INTEGRABLE_SUB ORELSE MATCH_MP_TAC REAL_INTEGRABLE_ADD) THEN ASM_SIMP_TAC[REAL_INTEGRABLE_NEG]);; let RINPROD_LADD = prove (`!f g z. f IN sq_integrable /\ g IN sq_integrable /\ z IN sq_integrable ==> r_inprod (f+g) z= r_inprod f z + r_inprod g z`, REWRITE_TAC[sq_integrable;complex_measurable;CFUN_ADD_THM;RE;IM;cnj;COMPLEX_SQNORM; r_inprod;complex_mul;RE_ADD;IM_ADD;GSYM REAL_NEG_LMUL;REAL_SUB_RNEG; REAL_ADD_RDISTRIB;GSYM real_sub;complex_add] THEN REPEAT STRIP_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[PAIR_EQ] THEN Pa.SUBGOAL_THEN `(\x. Re (f x) * Im (z x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (f x') pow 2 + Im (f x') pow 2) + (Re (z x') pow 2 + Im (z x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (a1+b2-c1)+(b1+a2)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN Pa.SUBGOAL_THEN `(\x. Im (f x) * Re (z x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (f x') pow 2 + Im (f x') pow 2) + (Re (z x') pow 2 + Im (z x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (b1+a2-c1)+(b2+a1)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN Pa.SUBGOAL_THEN `(\x. Re (g x) * Im (z x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (g x') pow 2 + Im (g x') pow 2) + (Re (z x') pow 2 + Im (z x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (a1+b2-c1)+(b1+a2)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN Pa.SUBGOAL_THEN `(\x. Im (g x) * Re (z x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (g x') pow 2 + Im (g x') pow 2) + (Re (z x') pow 2 + Im (z x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (b1+a2-c1)+(b2+a1)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN Pa.SUBGOAL_THEN `(\x. Re (f x) * Re (z x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (f x') pow 2 + Im (f x') pow 2) + (Re (z x') pow 2 + Im (z x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (a1+a2-c1)+(b2+b1)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN Pa.SUBGOAL_THEN `(\x. Im (f x) * Im (z x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (f x') pow 2 + Im (f x') pow 2) + (Re (z x') pow 2 + Im (z x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (b1+b2-c1)+(a2+a1)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN Pa.SUBGOAL_THEN `(\x. Re (g x) * Re (z x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (g x') pow 2 + Im (g x') pow 2) + (Re (z x') pow 2 + Im (z x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (a1+a2-c1)+(b2+b1)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN Pa.SUBGOAL_THEN `(\x. Im (g x) * Im (z x)) real_integrable_on (:real):` ASSUME_TAC THENL[ MATCH_MP_TAC REAL_MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN Pa.EXISTS_TAC `\x'.inv (&2) * (( Re (g x') pow 2 + Im (g x') pow 2) + (Re (z x') pow 2 + Im (z x') pow 2)):` THEN ASM_SIMP_TAC[REAL_MEASURABLE_ON_LMUL;REAL_MEASURABLE_ON_MUL; REAL_INTEGRABLE_ADD;REAL_INTEGRABLE_LMUL;REAL_ABS_MUL;REAL_ABS_NUM ;REAL_FIELD `x <= inv (&2) * y <=> &2 * x <= y`] THEN ONCE_REWRITE_TAC[GSYM REAL_SUB_LE] THEN ONCE_REWRITE_TAC[GSYM ABS_POW_2] THEN REWRITE_TAC[REAL_ARITH `(((a1:real)+b1)+a2+b2)-c1 = (b1+b2-c1)+(a2+a1)`; GSYM SQ_RULE_SUB;REAL_ABS_POW] THEN MESON_TAC[REAL_LE_ADD;REAL_LE_POW_2] ;ALL_TAC] THEN IMP_REWRITE_TAC[GSYM REAL_NEG_LMUL;REAL_INTEGRABLE_SUB; REAL_INTEGRABLE_NEG;REAL_INTEGRABLE_ADD; GSYM REAL_INTEGRAL_LMUL;REAL_INTEGRABLE_LMUL; GSYM REAL_INTEGRAL_SUB;GSYM REAL_INTEGRAL_ADD] THEN REPEAT STRIP_TAC THEN ((AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN REAL_ARITH_TAC) ORELSE (MATCH_MP_TAC REAL_INTEGRABLE_LMUL ORELSE ALL_TAC)) THEN (MATCH_MP_TAC REAL_INTEGRABLE_SUB ORELSE MATCH_MP_TAC REAL_INTEGRABLE_ADD) THEN ASM_SIMP_TAC[REAL_INTEGRABLE_NEG]);; let SQ_INTEGRABLE_INNER_SPACE = prove (`is_inner_space (sq_integrable, r_inprod)`, REWRITE_TAC[is_inner_space] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[RINPROD_LADD;RINPROD_RSMUL;RINPROD_RSMUL;RINPROD_ZERO_EQ;RINPROD_CNJ; RINPROD_SELF_POS;SQ_INTEGRABLE_SUBSPACE] );;