(* ========================================================================= *) (* L_p spaces for functions R^m->R^n based on an arbitrary set. *) (* ========================================================================= *) needs "Multivariate/realanalysis.ml";; (* ------------------------------------------------------------------------- *) (* The space L_p of measurable functions f with |f|^p integrable (on s). *) (* ------------------------------------------------------------------------- *) let lspace = new_definition `lspace s p = {f:real^M->real^N | f measurable_on s /\ (\x. lift(norm(f x) rpow p)) integrable_on s}`;; let LSPACE_ZERO = prove (`!s. lspace s (&0) = if measurable s then {f:real^M->real^N | f measurable_on s} else {}`, REWRITE_TAC[lspace; RPOW_POW; real_pow; NORM_0; LIFT_NUM] THEN GEN_TAC THEN REWRITE_TAC[INTEGRABLE_ON_CONST; VEC_EQ; ARITH_EQ] THEN ASM_CASES_TAC `measurable(s:real^M->bool)` THEN ASM_REWRITE_TAC[] THEN SET_TAC[]);; let LSPACE_CONST = prove (`!s p c. measurable s ==> (\x. c) IN lspace s p`, SIMP_TAC[lspace; IN_ELIM_THM; INTEGRABLE_ON_CONST; INTEGRABLE_IMP_MEASURABLE]);; let LSPACE_0 = prove (`!s p. ~(p = &0) ==> (\x. vec 0) IN lspace s p`, SIMP_TAC[lspace; IN_ELIM_THM; NORM_0; RPOW_ZERO; LIFT_NUM] THEN SIMP_TAC[INTEGRABLE_IMP_MEASURABLE; INTEGRABLE_0]);; let LSPACE_CMUL = prove (`!s p c f:real^M->real^N. f IN lspace s p ==> (\x. c % f x) IN lspace s p`, REPEAT GEN_TAC THEN REWRITE_TAC[lspace; IN_ELIM_THM] THEN SIMP_TAC[NORM_MUL; RPOW_MUL; NORM_POS_LE; LIFT_CMUL] THEN SIMP_TAC[MEASURABLE_ON_CMUL; INTEGRABLE_CMUL]);; let LSPACE_NEG = prove (`!s p f:real^M->real^N. f IN lspace s p ==> (\x. --(f x)) IN lspace s p`, REWRITE_TAC[VECTOR_ARITH `--x:real^N = --(&1) % x`; LSPACE_CMUL]);; let LSPACE_ADD = prove (`!s p f g:real^M->real^N. &0 <= p /\ f IN lspace s p /\ g IN lspace s p ==> (\x. f(x) + g(x)) IN lspace s p`, REPEAT GEN_TAC THEN REWRITE_TAC[REAL_LE_LT] THEN ASM_CASES_TAC `p = &0` THEN ASM_REWRITE_TAC[] THENL [REWRITE_TAC[LSPACE_ZERO] THEN ASM_CASES_TAC `measurable(s:real^M->bool)` THEN ASM_REWRITE_TAC[NOT_IN_EMPTY; IN_ELIM_THM; MEASURABLE_ON_ADD]; ALL_TAC] THEN REWRITE_TAC[lspace; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MEASURABLE_ON_ADD] THEN MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN EXISTS_TAC `\x. lift(&2 rpow p * (norm((f:real^M->real^N) x) rpow p + norm((g:real^M->real^N) x) rpow p))` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [SUBGOAL_THEN `(\x:real^M. lift(norm(f x + g x:real^N) rpow p)) = (lift o (\y. y rpow p) o drop) o (\x. lift(norm(f x + g x)))` SUBST1_TAC THENL [REWRITE_TAC[FUN_EQ_THM; o_THM; LIFT_DROP]; ALL_TAC] THEN MATCH_MP_TAC MEASURABLE_ON_COMPOSE_CONTINUOUS_0 THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC MEASURABLE_ON_NORM THEN MATCH_MP_TAC MEASURABLE_ON_ADD THEN ASM_REWRITE_TAC[]; ONCE_REWRITE_TAC[GSYM IMAGE_LIFT_UNIV] THEN REWRITE_TAC[GSYM REAL_CONTINUOUS_ON] THEN MATCH_MP_TAC REAL_CONTINUOUS_ON_RPOW THEN ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[o_THM; DROP_VEC; RPOW_ZERO; REAL_LT_IMP_NZ] THEN REWRITE_TAC[LIFT_NUM]]; REWRITE_TAC[LIFT_CMUL; LIFT_ADD] THEN MATCH_MP_TAC INTEGRABLE_CMUL THEN MATCH_MP_TAC INTEGRABLE_ADD THEN ASM_REWRITE_TAC[]; X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN REWRITE_TAC[NORM_LIFT; REAL_ABS_NORM; LIFT_DROP] THEN MATCH_MP_TAC(REAL_ARITH `(&0 <= norm(f + g:real^N) rpow p /\ &0 <= norm f /\ &0 <= norm g /\ norm(f + g) rpow p <= (norm f + norm g) rpow p) /\ (&0 <= norm f /\ &0 <= norm g ==> (norm f + norm g) rpow p <= e) ==> abs(norm(f + g) rpow p) <= e`) THEN CONJ_TAC THENL [ASM_SIMP_TAC[NORM_POS_LE; RPOW_POS_LE; RPOW_LE2; NORM_TRIANGLE; RPOW_LE2; REAL_LT_IMP_LE]; SPEC_TAC(`norm((g:real^M->real^N) x)`,`z:real`) THEN SPEC_TAC(`norm((f:real^M->real^N) x)`,`w:real`) THEN MATCH_MP_TAC REAL_WLOG_LE THEN CONJ_TAC THENL [MESON_TAC[REAL_ADD_SYM]; ALL_TAC] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `(&2 * z) rpow p` THEN CONJ_TAC THENL [MATCH_MP_TAC RPOW_LE2 THEN ASM_REAL_ARITH_TAC; ASM_SIMP_TAC[RPOW_MUL] THEN MATCH_MP_TAC REAL_LE_LMUL THEN ASM_SIMP_TAC[REAL_LE_ADDL; RPOW_POS_LE; REAL_POS]]]]);; let LSPACE_SUB = prove (`!s p f g:real^M->real^N. &0 <= p /\ f IN lspace s p /\ g IN lspace s p ==> (\x. f(x) - g(x)) IN lspace s p`, SIMP_TAC[VECTOR_SUB; LSPACE_ADD; LSPACE_NEG]);; let LSPACE_IMP_INTEGRABLE = prove (`!s p f. f IN lspace s p ==> (\x. lift(norm(f x) rpow p)) integrable_on s`, SIMP_TAC[lspace; IN_ELIM_THM]);; let LSPACE_NORM = prove (`!s p f. f IN lspace s p ==> (\x. lift(norm(f x))) IN lspace s p`, REWRITE_TAC[lspace; IN_ELIM_THM] THEN SIMP_TAC[NORM_LIFT; REAL_ABS_NORM; MEASURABLE_ON_NORM]);; let LSPACE_VSUM = prove (`!s p f:A->real^M->real^N t. &0 < p /\ FINITE t /\ (!i. i IN t ==> (f i) IN lspace s p) ==> (\x. vsum t (\i. f i x)) IN lspace s p`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES; LSPACE_0; REAL_LT_IMP_NZ] THEN ASM_SIMP_TAC[LSPACE_ADD; REAL_LT_IMP_LE; ETA_AX; IN_INSERT]);; let LSPACE_MAX = prove (`!s p k f:real^M->real^N g:real^M->real^N. f IN lspace s p /\ g IN lspace s p /\ &0 < p ==> ((\x. lambda i. max (f x$i) (g x$i)):real^M->real^N) IN lspace s p`, REWRITE_TAC[lspace; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MEASURABLE_ON_MAX] THEN MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN EXISTS_TAC `\x. lift(&(dimindex(:N)) rpow p * max (norm((f:real^M->real^N) x) rpow p) (norm((g:real^M->real^N) x) rpow p))` THEN ASM_SIMP_TAC[MEASURABLE_ON_LIFT_RPOW; MEASURABLE_ON_NORM; MEASURABLE_ON_MAX] THEN CONJ_TAC THENL [REWRITE_TAC[LIFT_CMUL] THEN MATCH_MP_TAC INTEGRABLE_CMUL THEN MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_IMP_INTEGRABLE THEN MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_MAX_1 THEN CONJ_TAC THEN MATCH_MP_TAC NONNEGATIVE_ABSOLUTELY_INTEGRABLE THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[IMP_IMP; DIMINDEX_1; FORALL_1; GSYM drop; LIFT_DROP] THEN SIMP_TAC[RPOW_POS_LE; NORM_POS_LE]; X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN ASM_SIMP_TAC[REAL_MAX_RPOW; NORM_POS_LE; REAL_LT_IMP_LE] THEN REWRITE_TAC[GSYM RPOW_MUL; NORM_LIFT; REAL_ABS_RPOW; REAL_ABS_NORM] THEN REWRITE_TAC[LIFT_DROP] THEN MATCH_MP_TAC RPOW_LE2 THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; NORM_POS_LE] THEN W(MP_TAC o PART_MATCH lhand NORM_LE_L1 o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM CARD_NUMSEG_1] THEN MATCH_MP_TAC SUM_BOUND THEN SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH `abs(x) <= y /\ abs(x') <= y' ==> abs(max x x') <= max y y'`) THEN ASM_SIMP_TAC[COMPONENT_LE_NORM]]);; let LSPACE_MIN = prove (`!s p k f:real^M->real^N g:real^M->real^N. f IN lspace s p /\ g IN lspace s p /\ &0 < p ==> ((\x. lambda i. min (f x$i) (g x$i)):real^M->real^N) IN lspace s p`, REWRITE_TAC[lspace; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[MEASURABLE_ON_MIN] THEN MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN EXISTS_TAC `\x. lift(&(dimindex(:N)) rpow p * max (norm((f:real^M->real^N) x) rpow p) (norm((g:real^M->real^N) x) rpow p))` THEN ASM_SIMP_TAC[MEASURABLE_ON_LIFT_RPOW; MEASURABLE_ON_NORM; MEASURABLE_ON_MIN] THEN CONJ_TAC THENL [REWRITE_TAC[LIFT_CMUL] THEN MATCH_MP_TAC INTEGRABLE_CMUL THEN MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_IMP_INTEGRABLE THEN MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_MAX_1 THEN CONJ_TAC THEN MATCH_MP_TAC NONNEGATIVE_ABSOLUTELY_INTEGRABLE THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REWRITE_TAC[IMP_IMP; DIMINDEX_1; FORALL_1; GSYM drop; LIFT_DROP] THEN SIMP_TAC[RPOW_POS_LE; NORM_POS_LE]; X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN ASM_SIMP_TAC[REAL_MAX_RPOW; NORM_POS_LE; REAL_LT_IMP_LE] THEN REWRITE_TAC[GSYM RPOW_MUL; NORM_LIFT; REAL_ABS_RPOW; REAL_ABS_NORM] THEN REWRITE_TAC[LIFT_DROP] THEN MATCH_MP_TAC RPOW_LE2 THEN ASM_SIMP_TAC[REAL_LT_IMP_LE; NORM_POS_LE] THEN W(MP_TAC o PART_MATCH lhand NORM_LE_L1 o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM CARD_NUMSEG_1] THEN MATCH_MP_TAC SUM_BOUND THEN SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; LAMBDA_BETA] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH `abs(x) <= y /\ abs(x') <= y' ==> abs(min x x') <= max y y'`) THEN ASM_SIMP_TAC[COMPONENT_LE_NORM]]);; let LSPACE_BOUNDED_MEASURABLE = prove (`!s p f:real^M->real^N g:real^M->real^P. &0 < p /\ f measurable_on s /\ g IN lspace s p /\ (!x. x IN s ==> norm(f x) <= norm(g x)) ==> f IN lspace s p`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[lspace; IN_ELIM_THM] THEN MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN EXISTS_TAC `\x. lift(norm((g:real^M->real^P) x) rpow p)` THEN ASM_SIMP_TAC[LSPACE_IMP_INTEGRABLE] THEN ASM_SIMP_TAC[MEASURABLE_ON_LIFT_RPOW; MEASURABLE_ON_NORM] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[NORM_LIFT; LIFT_DROP] THEN REWRITE_TAC[REAL_ABS_RPOW; REAL_ABS_NORM] THEN ASM_SIMP_TAC[RPOW_LE2; REAL_LT_IMP_LE; NORM_POS_LE]);; let LSPACE_BOUNDED_MEASURABLE_SIMPLE = prove (`!s p f:real^M->real^N. &0 < p /\ f measurable_on s /\ measurable s /\ bounded(IMAGE f s) ==> f IN lspace s p`, REPEAT STRIP_TAC THEN MATCH_MP_TAC(INST_TYPE [`:1`,`:P`] LSPACE_BOUNDED_MEASURABLE) THEN MATCH_MP_TAC(MESON[] `(?x. P(\a. lift x)) ==> (?x. P x)`) THEN ASM_SIMP_TAC[LSPACE_CONST; NORM_LIFT] THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN MATCH_MP_TAC MONO_EXISTS THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN SIMP_TAC[real_abs; REAL_LT_IMP_LE]);; let LSPACE_INTEGRABLE_PRODUCT = prove (`!s p q f:real^M->real^N g:real^M->real^N. &0 < p /\ &0 < q /\ inv(p) + inv(q) = &1 /\ f IN lspace s p /\ g IN lspace s q ==> (\x. lift(norm(f x) * norm(g x))) integrable_on s`, REWRITE_TAC[lspace; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN EXISTS_TAC `\x. lift(norm((f:real^M->real^N) x) rpow p / p) + lift(norm((g:real^M->real^N) x) rpow q / q)` THEN REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [REWRITE_TAC[LIFT_CMUL] THEN GEN_REWRITE_TAC (LAND_CONV o ABS_CONV o LAND_CONV) [GSYM LIFT_DROP] THEN MATCH_MP_TAC MEASURABLE_ON_DROP_MUL THEN CONJ_TAC THEN MATCH_MP_TAC MEASURABLE_ON_NORM THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC INTEGRABLE_ADD THEN REWRITE_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] real_div] THEN REWRITE_TAC[LIFT_CMUL] THEN CONJ_TAC THEN MATCH_MP_TAC INTEGRABLE_CMUL THEN ASM_REWRITE_TAC[]; REWRITE_TAC[NORM_LIFT; REAL_ABS_MUL; REAL_ABS_NORM; LIFT_DROP; DROP_ADD] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC YOUNG_INEQUALITY THEN ASM_REWRITE_TAC[NORM_POS_LE]]);; let LSPACE_1 = prove (`!f:real^M->real^N s. f IN lspace s (&1) <=> f absolutely_integrable_on s`, REWRITE_TAC[ABSOLUTELY_INTEGRABLE_MEASURABLE; lspace; IN_ELIM_THM] THEN REWRITE_TAC[RPOW_POW; REAL_POW_1]);; let LSPACE_MONO = prove (`!f:real^M->real^N s p q. f IN lspace s q /\ measurable s /\ &0 < p /\ p <= q ==> f IN lspace s p`, REWRITE_TAC[lspace; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN EXISTS_TAC `\x. lift(max (&1) (norm((f:real^M->real^N) x) rpow q))` THEN ASM_SIMP_TAC[MEASURABLE_ON_LIFT_RPOW; MEASURABLE_ON_NORM] THEN CONJ_TAC THENL [MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_IMP_INTEGRABLE THEN MATCH_MP_TAC ABSOLUTELY_INTEGRABLE_MAX_1 THEN CONJ_TAC THEN MATCH_MP_TAC NONNEGATIVE_ABSOLUTELY_INTEGRABLE THEN ASM_SIMP_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; INTEGRABLE_ON_CONST] THEN REWRITE_TAC[IMP_IMP; DIMINDEX_1; FORALL_1; GSYM drop; LIFT_DROP] THEN SIMP_TAC[RPOW_POS_LE; NORM_POS_LE; REAL_POS]; X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN REWRITE_TAC[NORM_LIFT; LIFT_DROP; REAL_ABS_RPOW; REAL_ABS_NORM] THEN DISJ_CASES_TAC(ISPECL [`&1`; `norm((f:real^M->real^N) x)`] REAL_LE_TOTAL) THENL [MATCH_MP_TAC(REAL_ARITH `x <= y ==> x <= max z y`) THEN MATCH_MP_TAC RPOW_MONO_LE THEN ASM_REWRITE_TAC[]; MATCH_MP_TAC(REAL_ARITH `x <= y ==> x <= max y z`) THEN MATCH_MP_TAC RPOW_1_LE THEN REWRITE_TAC[NORM_POS_LE] THEN ASM_REAL_ARITH_TAC]]);; let LSPACE_INCLUSION = prove (`!s p q. measurable s /\ &0 < p /\ p <= q ==> (lspace s q :(real^M->real^N)->bool) SUBSET (lspace s p)`, REWRITE_TAC[SUBSET] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC LSPACE_MONO THEN EXISTS_TAC `q:real` THEN ASM_REWRITE_TAC[]);; (* ------------------------------------------------------------------------- *) (* The corresponding seminorm; Hoelder and Minkowski inequalities. *) (* ------------------------------------------------------------------------- *) let lnorm = new_definition `lnorm s p f = drop(integral s (\x. lift(norm(f x) rpow p))) rpow (inv p)`;; let LNORM_0 = prove (`!s p. ~(p = &0) ==> lnorm s p (\x. vec 0) = &0`, REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[lnorm; NORM_0; RPOW_ZERO] THEN ASM_REWRITE_TAC[LIFT_NUM; INTEGRAL_0; DROP_VEC; RPOW_ZERO; REAL_INV_EQ_0]);; let LNORM_CONST = prove (`!s p c:real^N. measurable s /\ &0 < p ==> lnorm s p (\x:real^M. c) = measure s rpow (inv p) * norm c`, SIMP_TAC[lnorm; INTEGRAL_CONST_GEN; DROP_CMUL; LIFT_DROP] THEN SIMP_TAC[RPOW_RPOW; NORM_POS_LE; RPOW_MUL] THEN SIMP_TAC[REAL_MUL_RINV; REAL_LT_IMP_NZ; RPOW_POW; REAL_POW_1]);; let LNORM_MONO = prove (`!f:real^M->real^N g:real^M->real^P s t p. &0 <= p /\ f IN lspace s p /\ g IN lspace s p /\ negligible t /\ (!x. x IN s DIFF t ==> norm(f x) <= norm(g x)) ==> lnorm s p f <= lnorm s p g`, REWRITE_TAC[lspace; lnorm; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RPOW_LE2 THEN ASM_REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_SIMP_TAC[INTEGRAL_DROP_POS; LIFT_DROP; RPOW_POS_LE; NORM_POS_LE] THEN MATCH_MP_TAC INTEGRAL_DROP_LE_AE THEN EXISTS_TAC `t:real^M->bool` THEN ASM_REWRITE_TAC[LIFT_DROP] THEN ASM_SIMP_TAC[RPOW_LE2; NORM_POS_LE]);; let LNORM_NEG = prove (`!s p f:real^M->real^N. lnorm s p (\x. --(f x)) = lnorm s p f`, REWRITE_TAC[lnorm; NORM_NEG]);; let LNORM_MUL = prove (`!s p f c. f IN lspace s p /\ ~(p = &0) ==> lnorm s p (\x. c % f x) = abs(c) * lnorm s p f`, REPEAT STRIP_TAC THEN REWRITE_TAC[lnorm; NORM_MUL; RPOW_MUL; LIFT_CMUL] THEN ASM_SIMP_TAC[INTEGRAL_CMUL; LSPACE_IMP_INTEGRABLE] THEN REWRITE_TAC[DROP_CMUL; RPOW_MUL] THEN AP_THM_TAC THEN AP_TERM_TAC THEN ASM_SIMP_TAC[RPOW_RPOW; REAL_ABS_POS; REAL_MUL_RINV] THEN REWRITE_TAC[RPOW_POW; REAL_POW_1]);; let LNORM_EQ_0 = prove (`!s p f. ~(p = &0) /\ f IN lspace s p ==> (lnorm s p f = &0 <=> negligible {x | x IN s /\ ~(f x = vec 0)})`, REWRITE_TAC[lspace; IN_ELIM_THM] THEN REPEAT STRIP_TAC THEN ASM_SIMP_TAC[lnorm; RPOW_EQ_0; REAL_INV_EQ_0] THEN REWRITE_TAC[GSYM LIFT_EQ; LIFT_NUM; LIFT_DROP] THEN ASM_SIMP_TAC[INTEGRAL_EQ_HAS_INTEGRAL] THEN SIMP_TAC[HAS_INTEGRAL_NEGLIGIBLE_EQ; lift; LAMBDA_BETA; NORM_POS_LE; RPOW_POS_LE] THEN AP_TERM_TAC THEN GEN_REWRITE_TAC I [EXTENSION] THEN SIMP_TAC[IN_ELIM_THM; CART_EQ; LAMBDA_BETA] THEN REWRITE_TAC[FORALL_1; DIMINDEX_1; VEC_COMPONENT] THEN ASM_REWRITE_TAC[RPOW_EQ_0; NORM_EQ_0; CART_EQ; VEC_COMPONENT]);; let LNORM_POS_LE = prove (`!s p f. f IN lspace s p ==> &0 <= lnorm s p f`, SIMP_TAC[lspace; IN_ELIM_THM; lnorm] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC RPOW_POS_LE THEN MATCH_MP_TAC INTEGRAL_DROP_POS THEN ASM_SIMP_TAC[LIFT_DROP; NORM_POS_LE; RPOW_POS_LE]);; let LNORM_NORM = prove (`!s p f. lnorm s p (\x. lift(norm(f x))) = lnorm s p f`, REWRITE_TAC[lnorm; NORM_LIFT; REAL_ABS_NORM]);; let LNORM_RPOW = prove (`!s p f:real^M->real^N. f IN lspace s p /\ ~(p = &0) ==> (lnorm s p f) rpow p = drop(integral s (\x. lift(norm(f x) rpow p)))`, REPEAT STRIP_TAC THEN REWRITE_TAC[lnorm] THEN ASM_SIMP_TAC[INTEGRAL_DROP_POS; LIFT_DROP; NORM_POS_LE; RPOW_RPOW; LSPACE_IMP_INTEGRABLE; RPOW_POS_LE] THEN ASM_SIMP_TAC[REAL_MUL_LINV; RPOW_POW; REAL_POW_1]);; let INTEGRAL_LNORM_RPOW = prove (`!s p f:real^M->real^N. f IN lspace s p /\ ~(p = &0) ==> integral s (\x. lift(norm(f x) rpow p)) = lift((lnorm s p f) rpow p)`, SIMP_TAC[GSYM DROP_EQ; LIFT_DROP; LNORM_RPOW]);; let HOELDER_INEQUALITY = prove (`!s p q f:real^M->real^N g:real^M->real^N. &0 < p /\ &0 < q /\ inv(p) + inv(q) = &1 /\ f IN lspace s p /\ g IN lspace s q ==> drop(integral s (\x. lift(norm(f x) * norm(g x)))) <= lnorm s p f * lnorm s q g`, MP_TAC LSPACE_INTEGRABLE_PRODUCT THEN REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN DISCH_THEN(fun th -> STRIP_TAC THEN MP_TAC th) THEN ASM_REWRITE_TAC[] THEN DISCH_TAC THEN SUBGOAL_THEN `&0 <= lnorm s p (f:real^M->real^N) /\ &0 <= lnorm s q (g:real^M->real^N)` MP_TAC THENL [ASM_SIMP_TAC[LNORM_POS_LE]; REWRITE_TAC[IMP_CONJ]] THEN REPEAT (GEN_REWRITE_TAC LAND_CONV [REAL_ARITH `&0 <= x <=> x = &0 \/ &0 < x`] THEN DISCH_THEN(DISJ_CASES_THEN2 MP_TAC ASSUME_TAC) THENL [ASM_SIMP_TAC[LNORM_EQ_0; REAL_LT_IMP_NZ] THEN REPEAT DISCH_TAC THEN MATCH_MP_TAC(REAL_ARITH `&0 <= y /\ x = &0 ==> x <= y`) THEN ASM_SIMP_TAC[REAL_LE_MUL; LNORM_POS_LE; GSYM LIFT_EQ; LIFT_DROP] THEN ASM_SIMP_TAC[INTEGRAL_EQ_HAS_INTEGRAL; LIFT_NUM] THEN SIMP_TAC[HAS_INTEGRAL_NEGLIGIBLE_EQ; lift; LAMBDA_BETA; NORM_POS_LE; REAL_LE_MUL] THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] NEGLIGIBLE_SUBSET)) THEN SIMP_TAC[CART_EQ; SUBSET; IN_ELIM_THM; LAMBDA_BETA] THEN REWRITE_TAC[DIMINDEX_1; FORALL_1; VEC_COMPONENT] THEN REWRITE_TAC[REAL_ENTIRE; CART_EQ; NORM_EQ_0; VEC_COMPONENT] THEN MESON_TAC[]; ALL_TAC]) THEN GEN_REWRITE_TAC RAND_CONV [GSYM REAL_MUL_LID] THEN ASM_SIMP_TAC[GSYM REAL_LE_LDIV_EQ; REAL_LT_MUL] THEN REWRITE_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] real_div] THEN REWRITE_TAC[GSYM DROP_CMUL] THEN ASM_SIMP_TAC[GSYM INTEGRAL_CMUL] THEN REWRITE_TAC[REAL_INV_MUL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `drop(integral s (\x. lift(norm(inv(lnorm s p f) % (f:real^M->real^N) x) rpow p / p + norm(inv(lnorm s q g) % (g:real^M->real^N) x) rpow q / q)))` THEN CONJ_TAC THENL [MATCH_MP_TAC INTEGRAL_DROP_LE THEN ASM_SIMP_TAC[LIFT_DROP; INTEGRABLE_CMUL] THEN CONJ_TAC THENL [REWRITE_TAC[LIFT_ADD] THEN MATCH_MP_TAC INTEGRABLE_ADD THEN REWRITE_TAC[NORM_MUL; RPOW_MUL] THEN REWRITE_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] real_div] THEN ASM_SIMP_TAC[LSPACE_IMP_INTEGRABLE; INTEGRABLE_CMUL; LIFT_CMUL]; REWRITE_TAC[DROP_CMUL; LIFT_DROP; NORM_MUL; REAL_ABS_INV] THEN ASM_SIMP_TAC[real_abs; LNORM_POS_LE; REAL_LT_IMP_NZ] THEN ONCE_REWRITE_TAC[REAL_ARITH `(a * b) * (c * d:real) = (a * c) * (b * d)`] THEN REPEAT STRIP_TAC THEN MATCH_MP_TAC YOUNG_INEQUALITY THEN ASM_SIMP_TAC[REAL_LE_MUL; NORM_POS_LE; LNORM_POS_LE; REAL_LE_INV_EQ]]; REWRITE_TAC[LIFT_ADD; NORM_MUL; LIFT_CMUL; RPOW_MUL] THEN REWRITE_TAC[ONCE_REWRITE_RULE[REAL_MUL_SYM] real_div] THEN REWRITE_TAC[LIFT_CMUL; VECTOR_MUL_ASSOC] THEN ASM_SIMP_TAC[INTEGRAL_ADD; INTEGRABLE_CMUL; INTEGRAL_CMUL; LSPACE_IMP_INTEGRABLE; REAL_ABS_INV] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < x ==> abs x = x`; RPOW_INV] THEN ASM_SIMP_TAC[INTEGRAL_LNORM_RPOW; REAL_LT_IMP_NZ] THEN REWRITE_TAC[DROP_ADD; DROP_CMUL; LIFT_DROP] THEN ASM_SIMP_TAC[GSYM REAL_MUL_ASSOC; REAL_MUL_LINV; REAL_LT_IMP_NZ; RPOW_POS_LT] THEN ASM_REWRITE_TAC[REAL_MUL_RID; REAL_LE_REFL]]);; let HOELDER_INEQUALITY_FULL = prove (`!s p q f:real^M->real^N g:real^M->real^N. &0 < p /\ &0 < q /\ inv(p) + inv(q) = &1 /\ f IN lspace s p /\ g IN lspace s q ==> (\x. lift(norm(f x) * norm(g x))) integrable_on s /\ drop(integral s (\x. lift(norm(f x) * norm(g x)))) <= lnorm s p f * lnorm s q g`, REPEAT GEN_TAC THEN DISCH_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP LSPACE_INTEGRABLE_PRODUCT) THEN ASM_SIMP_TAC[HOELDER_INEQUALITY]);; let LNORM_TRIANGLE = prove (`!s p f:real^M->real^N g:real^M->real^N. f IN lspace s p /\ g IN lspace s p /\ &1 <= p ==> lnorm s p (\x. f x + g x) <= lnorm s p f + lnorm s p g`, REPEAT STRIP_TAC THEN ASM_CASES_TAC `p = &1` THENL [FIRST_X_ASSUM SUBST_ALL_TAC THEN ASM_SIMP_TAC[lnorm; MESON[RPOW_POW; REAL_POW_1; REAL_INV_1] `x rpow (inv(&1)) = x`; GSYM DROP_ADD; GSYM INTEGRAL_ADD; LSPACE_IMP_INTEGRABLE] THEN MATCH_MP_TAC INTEGRAL_DROP_LE_MEASURABLE THEN ASM_SIMP_TAC[LSPACE_IMP_INTEGRABLE; INTEGRABLE_ADD] THEN REWRITE_TAC[RPOW_POW; REAL_POW_1; LIFT_DROP; DROP_ADD] THEN REWRITE_TAC[NORM_POS_LE; NORM_TRIANGLE] THEN MATCH_MP_TAC MEASURABLE_ON_NORM THEN MATCH_MP_TAC MEASURABLE_ON_ADD THEN RULE_ASSUM_TAC(REWRITE_RULE[lspace; IN_ELIM_THM]) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN SUBGOAL_THEN `&1 < p` ASSUME_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN SUBGOAL_THEN `&0 <= lnorm s p (\x. (f:real^M->real^N) x + g x)` MP_TAC THENL [ASM_SIMP_TAC[LNORM_POS_LE; LSPACE_ADD; REAL_ARITH `&1 <= p ==> &0 <= p`]; GEN_REWRITE_TAC LAND_CONV [REAL_ARITH `&0 <= x <=> x = &0 \/ &0 < x`] THEN STRIP_TAC THEN ASM_SIMP_TAC[LNORM_POS_LE; REAL_LE_ADD]] THEN MATCH_MP_TAC REAL_LE_LCANCEL_IMP THEN EXISTS_TAC `lnorm s p (\x. (f:real^M->real^N) x + g x) rpow (p - &1)` THEN ASM_SIMP_TAC[RPOW_POS_LT] THEN GEN_REWRITE_TAC (LAND_CONV o RAND_CONV) [GSYM REAL_POW_1] THEN ASM_SIMP_TAC[GSYM RPOW_POW; GSYM RPOW_ADD] THEN ASM_SIMP_TAC[LSPACE_ADD; LNORM_RPOW; REAL_ARITH `p - &1 + &1 = p`; REAL_ARITH `&1 <= p ==> &0 <= p /\ ~(p = &0)`] THEN CONV_TAC(LAND_CONV(SUBS_CONV[REAL_ARITH `p = &1 + (p - &1)`])) THEN ASM_SIMP_TAC[RPOW_ADD_ALT; NORM_POS_LE; REAL_ARITH `&1 <= p ==> &1 + p - &1 = &0 ==> p - &1 = &0`] THEN REWRITE_TAC[RPOW_POW; REAL_POW_1] THEN MP_TAC(ISPECL [`s:real^M->bool`; `p:real`; `p / (p - &1)`; `\x. lift(norm((g:real^M->real^N) x))`; `\x. lift(norm((f:real^M->real^N)(x) + g(x)) rpow (p - &1))`] HOELDER_INEQUALITY_FULL) THEN MP_TAC(ISPECL [`s:real^M->bool`; `p:real`; `p / (p - &1)`; `\x. lift(norm((f:real^M->real^N) x))`; `\x. lift(norm((f:real^M->real^N)(x) + g(x)) rpow (p - &1))`] HOELDER_INEQUALITY_FULL) THEN ASM_SIMP_TAC[LSPACE_NORM; REAL_LT_DIV; REAL_SUB_LT; REAL_ARITH `&1 < p ==> &0 < p`; REAL_FIELD `&1 < p ==> inv(p) + inv(p / (p - &1)) = &1`] THEN MATCH_MP_TAC(TAUT `p /\ (q ==> r ==> s) ==> (p ==> q) ==> (p ==> r) ==> s`) THEN CONJ_TAC THENL [SIMP_TAC[lspace; IN_ELIM_THM; NORM_LIFT; REAL_ABS_NORM; REAL_ABS_RPOW; RPOW_RPOW; NORM_POS_LE] THEN ASM_SIMP_TAC[REAL_FIELD `&1 < p ==> (p - &1) * p / (p - &1) = p`] THEN ASM_SIMP_TAC[LSPACE_IMP_INTEGRABLE; LSPACE_ADD; REAL_ARITH `&1 < p ==> &0 <= p`] THEN MATCH_MP_TAC MEASURABLE_ON_LIFT_RPOW THEN CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN SUBGOAL_THEN `((\x. f x + g x):real^M->real^N) IN lspace s p` MP_TAC THENL [ASM_SIMP_TAC[LSPACE_ADD; REAL_ARITH `&1 < p ==> &0 <= p`]; SIMP_TAC[lspace; IN_ELIM_THM; MEASURABLE_ON_NORM]]; ALL_TAC] THEN REWRITE_TAC[NORM_LIFT; REAL_ABS_NORM; LNORM_NORM; REAL_ABS_RPOW] THEN MATCH_MP_TAC(TAUT `(p1 /\ p2 ==> b1 /\ b2 ==> c) ==> p1 /\ b1 ==> p2 /\ b2 ==> c`) THEN STRIP_TAC THEN DISCH_THEN(MP_TAC o MATCH_MP REAL_LE_ADD2) THEN ASM_SIMP_TAC[GSYM DROP_ADD; GSYM INTEGRAL_ADD] THEN SUBGOAL_THEN `lnorm s (p / (p - &1)) (\x. lift(norm (f x + g x) rpow (p - &1))) = lnorm s p (\x. (f:real^M->real^N) x + g x) rpow (p - &1)` SUBST1_TAC THENL [REWRITE_TAC[lnorm] THEN ASM_SIMP_TAC[RPOW_RPOW; INTEGRAL_DROP_POS; LIFT_DROP; NORM_POS_LE; NORM_LIFT; REAL_ABS_NORM; REAL_ABS_RPOW] THEN ASM_SIMP_TAC[REAL_FIELD `&1 < p ==> (p - &1) * p / (p - &1) = p`] THEN REWRITE_TAC[REAL_INV_DIV] THEN REWRITE_TAC[real_div] THEN ONCE_REWRITE_TAC[REAL_MUL_SYM] THEN MATCH_MP_TAC(GSYM RPOW_RPOW) THEN MATCH_MP_TAC INTEGRAL_DROP_POS THEN ASM_SIMP_TAC[LIFT_DROP; RPOW_POS_LE; NORM_POS_LE; LSPACE_IMP_INTEGRABLE; LSPACE_ADD; REAL_ARITH `&1 < p ==> &0 <= p`]; ALL_TAC] THEN MATCH_MP_TAC(REAL_ARITH `i2 <= i1 ==> i1 <= f * y + g * y ==> i2 <= y * (f + g)`) THEN MATCH_MP_TAC INTEGRAL_DROP_LE_MEASURABLE THEN ASM_SIMP_TAC[INTEGRABLE_ADD] THEN CONJ_TAC THENL [MATCH_MP_TAC MEASURABLE_ON_LIFT_MUL THEN CONJ_TAC THENL [ALL_TAC; MATCH_MP_TAC MEASURABLE_ON_LIFT_RPOW THEN CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC]] THEN (SUBGOAL_THEN `((\x. f x + g x):real^M->real^N) IN lspace s p` MP_TAC THENL [ASM_SIMP_TAC[LSPACE_ADD; REAL_ARITH `&1 < p ==> &0 <= p`]; SIMP_TAC[lspace; IN_ELIM_THM; MEASURABLE_ON_NORM]]); REWRITE_TAC[GSYM REAL_ADD_RDISTRIB; LIFT_DROP; DROP_ADD] THEN SIMP_TAC[NORM_TRIANGLE; REAL_LE_RMUL; NORM_POS_LE; RPOW_POS_LE; REAL_LE_MUL]]);; let VSUM_LNORM = prove (`!s p f:A->real^M->real^N t. &1 <= p /\ FINITE t /\ (!i. i IN t ==> (f i) IN lspace s p) ==> lnorm s p (\x. vsum t (\i. f i x)) <= sum t (\i. lnorm s p (f i))`, REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM] THEN REPEAT GEN_TAC THEN DISCH_TAC THEN GEN_TAC THEN MATCH_MP_TAC FINITE_INDUCT_STRONG THEN ASM_SIMP_TAC[SUM_CLAUSES; VSUM_CLAUSES; LNORM_0; REAL_LE_REFL; REAL_ARITH `&1 <= p ==> ~(p = &0)`] THEN MAP_EVERY X_GEN_TAC [`i:A`; `u:A->bool`] THEN REWRITE_TAC[IN_INSERT] THEN DISCH_THEN(fun th -> DISCH_TAC THEN MP_TAC th) THEN ASM_SIMP_TAC[] THEN DISCH_THEN(CONJUNCTS_THEN2 MP_TAC ASSUME_TAC) THEN MATCH_MP_TAC(REAL_ARITH `a <= x + y ==> y <= z ==> a <= x + z`) THEN W(MP_TAC o PART_MATCH (lhand o rand) LNORM_TRIANGLE o lhand o snd) THEN ASM_SIMP_TAC[ETA_AX; LSPACE_VSUM; REAL_ARITH `&1 <= p ==> &0 < p`]);; (* ------------------------------------------------------------------------- *) (* Completeness (Riesz-Fischer). *) (* ------------------------------------------------------------------------- *) let LSPACE_SUMMABLE_UNIV = prove (`!f:num->real^M->real^N p s. &1 <= p /\ (!i. f i IN lspace s p) /\ real_summable (:num) (\i. lnorm s p (f i)) ==> ?g. g IN lspace s p /\ !e. &0 < e ==> eventually (\n. lnorm s p (\x. vsum (0..n) (\i. f i x) - g(x)) < e) sequentially`, REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o GEN_REWRITE_RULE I [GSYM REAL_SUMS_INFSUM]) THEN ABBREV_TAC `M = real_infsum (:num) (\i. lnorm s p (f i:real^M->real^N))` THEN DISCH_TAC THEN ABBREV_TAC `g = \n x:real^M. vsum(0..n) (\i. lift(norm(f i x:real^N)))` THEN SUBGOAL_THEN `!n:num. lnorm s p (g n:real^M->real^1) <= M` ASSUME_TAC THENL [GEN_TAC THEN EXPAND_TAC "g" THEN W(MP_TAC o PART_MATCH (lhand o rand) VSUM_LNORM o lhand o snd) THEN ASM_SIMP_TAC[FINITE_NUMSEG; LSPACE_NORM; ETA_AX] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN REWRITE_TAC[LNORM_NORM] THEN EXPAND_TAC "M" THEN GEN_REWRITE_TAC (LAND_CONV o LAND_CONV) [SET_RULE `s = UNIV INTER s`] THEN REWRITE_TAC[ETA_AX] THEN MATCH_MP_TAC REAL_PARTIAL_SUMS_LE_INFSUM THEN ASM_SIMP_TAC[LNORM_POS_LE]; ALL_TAC] THEN SUBGOAL_THEN `!n:num. (g n:real^M->real^1) IN lspace s p` ASSUME_TAC THENL [GEN_TAC THEN EXPAND_TAC "g" THEN REWRITE_TAC[] THEN MATCH_MP_TAC LSPACE_VSUM THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; REWRITE_TAC[FINITE_NUMSEG]] THEN ASM_SIMP_TAC[LSPACE_NORM; ETA_AX]; ALL_TAC] THEN SUBGOAL_THEN `!n:num x:real^M. &0 <= drop(g n x)` ASSUME_TAC THENL [REPEAT GEN_TAC THEN EXPAND_TAC "g" THEN SIMP_TAC[DROP_VSUM; FINITE_NUMSEG; LIFT_DROP] THEN MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN REWRITE_TAC[o_DEF; LIFT_DROP; NORM_POS_LE]; ALL_TAC] THEN MP_TAC(ISPECL [`\i:num x:real^M. lift(drop(g i x) rpow p)`; `s:real^M->bool`] BEPPO_LEVI_MONOTONE_CONVERGENCE_INCREASING) THEN REWRITE_TAC[LIFT_DROP] THEN ANTS_TAC THENL [MATCH_MP_TAC(TAUT `b /\ a /\ c ==> a /\ b /\ c`) THEN CONJ_TAC THENL [REPEAT STRIP_TAC THEN EXPAND_TAC "g" THEN SIMP_TAC[DROP_VSUM; FINITE_NUMSEG] THEN MATCH_MP_TAC RPOW_LE2 THEN REPEAT CONJ_TAC THENL [MATCH_MP_TAC SUM_POS_LE_NUMSEG THEN REWRITE_TAC[o_DEF; LIFT_DROP; NORM_POS_LE]; SIMP_TAC[SUM_CLAUSES_NUMSEG; LE_0; REAL_LE_ADDR] THEN REWRITE_TAC[o_DEF; LIFT_DROP; NORM_POS_LE]; ASM_REAL_ARITH_TAC]; ALL_TAC] THEN SUBGOAL_THEN `!k x. drop((g:num->real^M->real^1) k x) = norm(g k x)` (fun th -> REWRITE_TAC[th]) THENL [REPEAT GEN_TAC THEN REWRITE_TAC[NORM_REAL; GSYM drop] THEN ASM_REWRITE_TAC[real_abs]; ALL_TAC] THEN ASM_SIMP_TAC[LSPACE_IMP_INTEGRABLE; ETA_AX] THEN REWRITE_TAC[bounded] THEN EXISTS_TAC `M rpow p` THEN REWRITE_TAC[FORALL_IN_GSPEC] THEN X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN ASM_SIMP_TAC[INTEGRAL_LNORM_RPOW; ETA_AX; REAL_ARITH `&1 <= p ==> ~(p = &0)`] THEN REWRITE_TAC[NORM_LIFT; REAL_ABS_RPOW] THEN MATCH_MP_TAC RPOW_LE2 THEN ASM_SIMP_TAC[REAL_ARITH `&1 <= p ==> &0 <= p`] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x <= a ==> &0 <= abs x /\ abs x <= a`) THEN ASM_SIMP_TAC[LNORM_POS_LE]; ALL_TAC] THEN REWRITE_TAC[LEFT_IMP_EXISTS_THM] THEN MAP_EVERY X_GEN_TAC [`hp:real^M->real^1`; `k:real^M->bool`] THEN STRIP_TAC THEN ABBREV_TAC `h:real^M->real^1 = \x. lift(drop(hp x) rpow (inv p))` THEN SUBGOAL_THEN `!x. x IN s DIFF k ==> ((\i. g i x) --> ((h:real^M->real^1) x)) sequentially` ASSUME_TAC THENL [X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN MP_TAC(ISPECL [`lift o (\x. x rpow (inv p)) o drop`; `sequentially`; `\i. lift(drop((g:num->real^M->real^1) i x) rpow p)`; `(hp:real^M->real^1) x`] LIM_CONTINUOUS_FUNCTION) THEN ASM_SIMP_TAC[] THEN ANTS_TAC THENL [GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM LIFT_DROP] THEN REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN MATCH_MP_TAC REAL_CONTINUOUS_AT_RPOW THEN REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN EXPAND_TAC "h" THEN REWRITE_TAC[o_DEF; LIFT_DROP] THEN ASM_SIMP_TAC[RPOW_RPOW; REAL_MUL_RINV; REAL_ARITH `&1 <= p ==> ~(p = &0)`] THEN REWRITE_TAC[RPOW_POW; REAL_POW_1; LIFT_DROP; ETA_AX]; ALL_TAC] THEN SUBGOAL_THEN `!x. x IN s DIFF k ==> summable (:num) (\i. (f:num->real^M->real^N) i x)` MP_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC SERIES_LIFT_ABSCONV_IMP_CONV THEN REWRITE_TAC[summable] THEN EXISTS_TAC `(h:real^M->real^1) x` THEN REWRITE_TAC[sums; INTER_UNIV] THEN RULE_ASSUM_TAC(REWRITE_RULE[FUN_EQ_THM]) THEN ASM_SIMP_TAC[]; ALL_TAC] THEN REWRITE_TAC[summable] THEN GEN_REWRITE_TAC (LAND_CONV o ONCE_DEPTH_CONV) [RIGHT_IMP_EXISTS_THM] THEN REWRITE_TAC[SKOLEM_THM] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `l:real^M->real^N` THEN DISCH_TAC THEN SUBGOAL_THEN `!n x. x IN s DIFF k ==> norm(vsum (0..n) (\i. (f:num->real^M->real^N) i x)) <= drop(h x)` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC VSUM_NORM_TRIANGLE THEN REWRITE_TAC[FINITE_NUMSEG] THEN GEN_REWRITE_TAC LAND_CONV [GSYM LIFT_DROP] THEN SIMP_TAC[LIFT_SUM; FINITE_NUMSEG] THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_DROP_LBOUND) THEN EXISTS_TAC `\n. vsum (0..n) (\i. lift(norm((f:num->real^M->real^N) i x)))` THEN REWRITE_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN CONJ_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[FUN_EQ_THM]) THEN ASM_SIMP_TAC[IN_DIFF]; REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN EXISTS_TAC `n:num` THEN X_GEN_TAC `m:num` THEN DISCH_TAC THEN SIMP_TAC[DROP_VSUM; FINITE_NUMSEG; o_DEF; LIFT_DROP] THEN MATCH_MP_TAC SUM_SUBSET_SIMPLE THEN REWRITE_TAC[SUBSET; IN_NUMSEG; NORM_POS_LE; FINITE_NUMSEG] THEN UNDISCH_TAC `n:num <= m` THEN ARITH_TAC]; ALL_TAC] THEN SUBGOAL_THEN `!x. x IN s DIFF k ==> norm((l:real^M->real^N) x) <= drop(h x)` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_UBOUND) THEN EXISTS_TAC `\n. vsum ((:num) INTER (0..n)) (\i. (f:num->real^M->real^N) i x)` THEN ASM_SIMP_TAC[IN_DIFF; GSYM sums; TRIVIAL_LIMIT_SEQUENTIALLY] THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN ASM_SIMP_TAC[INTER_UNIV]; ALL_TAC] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [REWRITE_TAC[lspace; IN_ELIM_THM] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [MATCH_MP_TAC MEASURABLE_ON_LIMIT THEN EXISTS_TAC `\n x. vsum (0..n) (\i. (f:num->real^M->real^N) i x)` THEN EXISTS_TAC `k:real^M->bool` THEN ASM_REWRITE_TAC[] THEN ONCE_REWRITE_TAC[SET_RULE `0..n = UNIV INTER (0..n)`] THEN ASM_REWRITE_TAC[GSYM sums] THEN GEN_TAC THEN REWRITE_TAC[INTER_UNIV] THEN MATCH_MP_TAC MEASURABLE_ON_VSUM THEN RULE_ASSUM_TAC(REWRITE_RULE[lspace; IN_ELIM_THM]) THEN ASM_REWRITE_TAC[FINITE_NUMSEG]; DISCH_TAC] THEN MATCH_MP_TAC MEASURABLE_BOUNDED_BY_INTEGRABLE_IMP_INTEGRABLE THEN EXISTS_TAC `\x. if x IN k then lift(norm(l x:real^N) rpow p) else (hp:real^M->real^1) x` THEN ASM_SIMP_TAC[MEASURABLE_ON_LIFT_RPOW; MEASURABLE_ON_NORM; ETA_AX; REAL_ARITH `&1 <= p ==> &0 < p`] THEN CONJ_TAC THENL [UNDISCH_TAC `(hp:real^M->real^1) integrable_on s` THEN MATCH_MP_TAC INTEGRABLE_SPIKE THEN EXISTS_TAC `k:real^M->bool` THEN ASM_SIMP_TAC[IN_DIFF]; REWRITE_TAC[NORM_LIFT; REAL_ABS_RPOW; REAL_ABS_NORM] THEN GEN_TAC THEN DISCH_TAC THEN COND_CASES_TAC THEN REWRITE_TAC[LIFT_DROP; REAL_LE_REFL] THEN MATCH_MP_TAC REAL_LE_TRANS THEN EXISTS_TAC `drop(h(x:real^M)) rpow p` THEN CONJ_TAC THENL [MATCH_MP_TAC RPOW_LE2 THEN ASM_SIMP_TAC[NORM_POS_LE; IN_DIFF] THEN ASM_REAL_ARITH_TAC; EXPAND_TAC "h" THEN REWRITE_TAC[LIFT_DROP] THEN MATCH_MP_TAC(REAL_ARITH `x = y pow 1 ==> x <= y`) THEN MATCH_MP_TAC EQ_TRANS THEN EXISTS_TAC `drop(hp(x:real^M)) rpow (inv p * p)` THEN CONJ_TAC THENL [MATCH_MP_TAC RPOW_RPOW THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_DROP_LBOUND) THEN EXISTS_TAC `\k. lift(drop((g:num->real^M->real^1) k x) rpow p)` THEN ASM_SIMP_TAC[IN_DIFF; TRIVIAL_LIMIT_SEQUENTIALLY] THEN ASM_SIMP_TAC[LIFT_DROP; RPOW_POS_LE; EVENTUALLY_TRUE]; ASM_SIMP_TAC[REAL_MUL_LINV; REAL_ARITH `&1 <= p ==> ~(p = &0)`] THEN REWRITE_TAC[RPOW_POW]]]]; DISCH_TAC] THEN SUBGOAL_THEN `!x:real^M. x IN s DIFF k ==> &0 <= drop(h x)` ASSUME_TAC THENL [ASM_MESON_TAC[REAL_LE_TRANS; NORM_POS_LE]; ALL_TAC] THEN SUBGOAL_THEN `!x:real^M. x IN s DIFF k ==> &0 <= drop(hp x)` ASSUME_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_DROP_LBOUND) THEN EXISTS_TAC `\k. lift(drop((g:num->real^M->real^1) k x) rpow p)` THEN ASM_SIMP_TAC[TRIVIAL_LIMIT_SEQUENTIALLY; LIFT_DROP; RPOW_POS_LE] THEN REWRITE_TAC[EVENTUALLY_TRUE]; ALL_TAC] THEN MP_TAC(ISPECL [`\n x. lift(norm(vsum (0..n) (\i. (f:num->real^M->real^N) i x) - l x) rpow p)`; `(\x. vec 0):real^M->real^1`; `\x:real^M. &2 rpow p % lift(drop(h x) rpow p)`; `s DIFF k:real^M->bool`] DOMINATED_CONVERGENCE) THEN REWRITE_TAC[lnorm; INTEGRAL_0; REAL_INTEGRAL_0; INTEGRABLE_0] THEN ANTS_TAC THENL [REPEAT CONJ_TAC THENL [X_GEN_TAC `n:num` THEN MATCH_MP_TAC(REWRITE_RULE[IMP_IMP] INTEGRABLE_SPIKE_SET) THEN EXISTS_TAC `s:real^M->bool` THEN CONJ_TAC THENL [FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] NEGLIGIBLE_SUBSET)) THEN SET_TAC[]; MATCH_MP_TAC LSPACE_IMP_INTEGRABLE THEN MATCH_MP_TAC LSPACE_SUB THEN ASM_REWRITE_TAC[ETA_AX] THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC LSPACE_VSUM THEN ASM_REWRITE_TAC[FINITE_NUMSEG] THEN ASM_REAL_ARITH_TAC]; MATCH_MP_TAC INTEGRABLE_CMUL THEN EXPAND_TAC "h" THEN REWRITE_TAC[LIFT_DROP] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_IMP] INTEGRABLE_SPIKE) THEN EXISTS_TAC `hp:real^M->real^1` THEN EXISTS_TAC `{}:real^M->bool` THEN ASM_SIMP_TAC[DIFF_EMPTY; NEGLIGIBLE_EMPTY; RPOW_RPOW] THEN ASM_SIMP_TAC[REAL_MUL_LINV; REAL_ARITH `&1 <= p ==> ~(p = &0)`] THEN REWRITE_TAC[LIFT_DROP; RPOW_POW; REAL_POW_1] THEN UNDISCH_TAC `(hp:real^M->real^1) integrable_on s` THEN MATCH_MP_TAC INTEGRABLE_SPIKE_SET THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] NEGLIGIBLE_SUBSET)) THEN SET_TAC[]; REWRITE_TAC[DROP_CMUL; GSYM RPOW_MUL; LIFT_DROP] THEN REPEAT STRIP_TAC THEN REWRITE_TAC[NORM_REAL; GSYM drop] THEN REWRITE_TAC[REAL_ABS_NORM; LIFT_DROP; REAL_ABS_RPOW] THEN MATCH_MP_TAC RPOW_LE2 THEN REWRITE_TAC[NORM_POS_LE] THEN CONJ_TAC THENL [ALL_TAC; ASM_REAL_ARITH_TAC] THEN MATCH_MP_TAC(NORM_ARITH `norm(x:real^N) <= a /\ norm(y) <= a ==> norm(x - y) <= &2 * a`) THEN ASM_SIMP_TAC[]; X_GEN_TAC `x:real^M` THEN STRIP_TAC THEN MATCH_MP_TAC LIM_NULL_RPOW THEN CONJ_TAC THENL [REWRITE_TAC[o_DEF]; ASM_REAL_ARITH_TAC] THEN REWRITE_TAC[GSYM LIM_NULL_NORM] THEN REWRITE_TAC[GSYM LIM_NULL] THEN RULE_ASSUM_TAC(REWRITE_RULE[sums; INTER_UNIV]) THEN ASM_SIMP_TAC[]]; GEN_REWRITE_TAC (LAND_CONV o RATOR_CONV o LAND_CONV o ABS_CONV) [GSYM LIFT_DROP] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ; o_DEF] LIM_NULL_RPOW)) THEN DISCH_THEN(MP_TAC o SPEC `inv p:real`) THEN ASM_REWRITE_TAC[REAL_LT_INV_EQ] THEN ANTS_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN REWRITE_TAC[tendsto; DIST_0; NORM_REAL; GSYM drop; LIFT_DROP] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN SUBGOAL_THEN `!f:real^M->real^1. integral (s DIFF k) f = integral s f` MP_TAC THENL [ALL_TAC; SIMP_TAC[REAL_ARITH `abs(x) < e ==> x < e`]] THEN GEN_TAC THEN MATCH_MP_TAC INTEGRAL_SPIKE_SET THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] NEGLIGIBLE_SUBSET)) THEN SET_TAC[]]);; let LSPACE_SUMMABLE = prove (`!f:num->real^M->real^N p s t. &1 <= p /\ (!i. i IN t ==> f i IN lspace s p) /\ real_summable t (\i. lnorm s p (f i)) ==> ?g. g IN lspace s p /\ ((\n. lnorm s p (\x. vsum (t INTER (0..n)) (\i. f i x) - g x)) ---> &0) sequentially`, REPEAT GEN_TAC THEN ONCE_REWRITE_TAC[GSYM REAL_SUMMABLE_RESTRICT] THEN REWRITE_TAC[] THEN STRIP_TAC THEN MP_TAC(ISPECL [`(\n:num x. if n IN t then f n x else vec 0):num->real^M->real^N`; `p:real`; `s:real^M->bool`] LSPACE_SUMMABLE_UNIV) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [CONJ_TAC THENL [X_GEN_TAC `i:num` THEN ASM_CASES_TAC `(i:num) IN t` THEN ASM_SIMP_TAC[LSPACE_0; ETA_AX; REAL_ARITH `&1 <= p ==> ~(p = &0)`]; FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [real_summable]) THEN REWRITE_TAC[real_summable] THEN MATCH_MP_TAC MONO_EXISTS THEN GEN_TAC THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN GEN_TAC THEN COND_CASES_TAC THEN ASM_SIMP_TAC[ETA_AX; LNORM_0; REAL_ARITH `&1 <= p ==> ~(p = &0)`]]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `g:real^M->real^N` THEN ASM_CASES_TAC `(g:real^M->real^N) IN lspace s p` THEN ASM_REWRITE_TAC[tendsto_real] THEN MATCH_MP_TAC MONO_FORALL THEN GEN_TAC THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] EVENTUALLY_MONO) THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[REAL_SUB_RZERO] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x = y ==> x < e ==> abs y < e`) THEN CONJ_TAC THENL [MATCH_MP_TAC LNORM_POS_LE THEN MATCH_MP_TAC LSPACE_SUB THEN ASM_SIMP_TAC[REAL_ARITH `&1 <= p ==> &0 <= p`] THEN MATCH_MP_TAC LSPACE_VSUM THEN ASM_SIMP_TAC[FINITE_NUMSEG; REAL_ARITH `&1 <= p ==> &0 < p`] THEN X_GEN_TAC `i:num` THEN ASM_CASES_TAC `(i:num) IN t` THEN ASM_SIMP_TAC[ETA_AX; LSPACE_0; REAL_ARITH `&1 <= p ==> ~(p = &0)`]; AP_TERM_TAC THEN REWRITE_TAC[FUN_EQ_THM] THEN X_GEN_TAC `x:real^M` THEN REWRITE_TAC[GSYM VSUM_RESTRICT_SET] THEN REWRITE_TAC[SET_RULE `s INTER t = {x | x IN t /\ x IN s}`]]]);; let RIESZ_FISCHER = prove (`!f:num->real^M->real^N p s. &1 <= p /\ (!n. (f n) IN lspace s p) /\ (!e. &0 < e ==> ?N. !m n. m >= N /\ n >= N ==> lnorm s p (\x. f m x - f n x) < e) ==> ?g. g IN lspace s p /\ !e. &0 < e ==> ?N. !n. n >= N ==> lnorm s p (\x. f n x - g x) < e`, REPEAT STRIP_TAC THEN SUBGOAL_THEN `?k:num->num. (!n. k n < k (SUC n)) /\ (!n. lnorm s p ((\x. f (k(SUC n)) x - f (k n) x):real^M->real^N) < inv(&2 pow n))` STRIP_ASSUME_TAC THENL [FIRST_X_ASSUM(MP_TAC o GEN `n:num` o SPEC `inv(&2 pow n)`) THEN REWRITE_TAC[REAL_LT_INV_EQ; REAL_LT_POW2; SKOLEM_THM] THEN DISCH_THEN(X_CHOOSE_TAC `N:num->num`) THEN MP_TAC(prove_recursive_functions_exist num_RECURSION `k 0 = N 0 /\ !n. k(SUC n) = MAX (k n + 1) (MAX (N n) (N(SUC n)))`) THEN MATCH_MP_TAC MONO_EXISTS THEN REPEAT STRIP_TAC THEN ASM_REWRITE_TAC[ARITH_RULE `n < MAX (n + 1) m`] THEN FIRST_X_ASSUM MATCH_MP_TAC THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [ARITH_TAC; SPEC_TAC(`n:num`,`n:num`)] THEN INDUCT_TAC THEN ASM_REWRITE_TAC[] THEN ARITH_TAC; ALL_TAC] THEN MP_TAC(ISPECL [`\n x. f (k(SUC n)) x - (f:num->real^M->real^N) (k n) x`; `p:real`; `s:real^M->bool`] LSPACE_SUMMABLE_UNIV) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [ASM_SIMP_TAC[LSPACE_SUB; ETA_AX; REAL_ARITH `&1 <= p ==> &0 <= p`] THEN MATCH_MP_TAC REAL_SUMMABLE_COMPARISON THEN EXISTS_TAC `\n. inv(&2) pow n` THEN CONJ_TAC THENL [MATCH_MP_TAC REAL_SUMMABLE_GP THEN CONV_TAC REAL_RAT_REDUCE_CONV; EXISTS_TAC `0` THEN X_GEN_TAC `n:num` THEN DISCH_THEN(K ALL_TAC) THEN REWRITE_TAC[GSYM REAL_INV_POW] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x /\ x < y ==> abs x <= y`) THEN ASM_SIMP_TAC[LNORM_POS_LE; LSPACE_SUB; ETA_AX; REAL_ARITH `&1 <= p ==> &0 <= p`]]; DISCH_THEN(X_CHOOSE_THEN `g:real^M->real^N` MP_TAC) THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC (LABEL_TAC "*")) THEN EXISTS_TAC `\x. (g:real^M->real^N) x + f (k 0:num) x` THEN ASM_SIMP_TAC[LSPACE_ADD; ETA_AX; REAL_ARITH `&1 <= p ==> &0 <= p`] THEN X_GEN_TAC `e:real` THEN DISCH_TAC THEN REMOVE_THEN "*" (MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; EVENTUALLY_SEQUENTIALLY] THEN REWRITE_TAC[ADD1; VSUM_DIFFS_ALT; LE_0] THEN DISCH_THEN(X_CHOOSE_THEN `N1:num` (LABEL_TAC "+")) THEN FIRST_X_ASSUM(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF; GE] THEN DISCH_THEN(X_CHOOSE_TAC `N2:num`) THEN EXISTS_TAC `MAX N1 N2` THEN X_GEN_TAC `n:num` THEN REWRITE_TAC[ARITH_RULE `MAX N1 N2 <= n <=> N1 <= n /\ N2 <= n`] THEN STRIP_TAC THEN REMOVE_THEN "+" (MP_TAC o SPEC `n:num`) THEN FIRST_X_ASSUM(MP_TAC o SPECL [`k(n + 1):num`; `n:num`]) THEN ASM_REWRITE_TAC[] THEN ANTS_TAC THENL [MATCH_MP_TAC LE_TRANS THEN EXISTS_TAC `n + 1` THEN CONJ_TAC THENL [ASM_ARITH_TAC; SPEC_TAC(`n + 1`,`m:num`)] THEN INDUCT_TAC THEN REWRITE_TAC[LE_0] THEN MATCH_MP_TAC(ARITH_RULE `m <= k m /\ k m < k(SUC m) ==> SUC m <= k(SUC m)`) THEN ASM_REWRITE_TAC[]; REPEAT DISCH_TAC THEN ONCE_REWRITE_TAC[VECTOR_ARITH `f n x - (g x + f (k 0) x):real^N = (f (k (n + 1)) x - f (k 0) x - g x) + --(f (k (n + 1)) x - f n x)`] THEN W(MP_TAC o PART_MATCH (lhand o rand) LNORM_TRIANGLE o lhand o snd) THEN ASM_SIMP_TAC[LSPACE_SUB; LSPACE_NEG; ETA_AX; REAL_ARITH `&1 <= p ==> &0 <= p`] THEN MATCH_MP_TAC(REAL_ARITH `x < e / &2 /\ y < e / &2 ==> z <= x + y ==> z < e`) THEN ASM_SIMP_TAC[LNORM_NEG; LSPACE_SUB; ETA_AX; REAL_ARITH `&1 <= p ==> &0 <= p`]]]);; (* ------------------------------------------------------------------------- *) (* A sort of dominated convergence theorem for L_p spaces. *) (* ------------------------------------------------------------------------- *) let LSPACE_DOMINATED_CONVERGENCE = prove (`!f:num->real^M->real^N g h:real^M->real^N s p k. &0 < p /\ (!n. (f n) IN lspace s p) /\ h IN lspace s p /\ (!n x. x IN s ==> norm(f n x) <= norm(h x)) /\ negligible k /\ (!x. x IN s DIFF k ==> ((\n. f n x) --> g(x)) sequentially) ==> g IN lspace s p /\ ((\n. lnorm s p (\x. f n x - g x)) ---> &0) sequentially`, REPEAT GEN_TAC THEN STRIP_TAC THEN MP_TAC(ISPECL [`\n x. lift(norm((f:num->real^M->real^N) n x) rpow p)`; `\x. lift(norm((g:real^M->real^N) x) rpow p)`; `\x. lift(norm((h:real^M->real^N) x) rpow p)`; `s DIFF k:real^M->bool`] DOMINATED_CONVERGENCE) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [REPEAT CONJ_TAC THENL [X_GEN_TAC `k:num` THEN FIRST_ASSUM(MP_TAC o MATCH_MP LSPACE_IMP_INTEGRABLE o SPEC `k:num`) THEN MATCH_MP_TAC INTEGRABLE_SPIKE_SET THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] NEGLIGIBLE_SUBSET)) THEN SET_TAC[]; FIRST_ASSUM(MP_TAC o MATCH_MP LSPACE_IMP_INTEGRABLE) THEN MATCH_MP_TAC INTEGRABLE_SPIKE_SET THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] NEGLIGIBLE_SUBSET)) THEN SET_TAC[]; MAP_EVERY X_GEN_TAC [`k:num`; `x:real^M`] THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN REWRITE_TAC[NORM_LIFT; REAL_ABS_RPOW; REAL_ABS_NORM; LIFT_DROP] THEN MATCH_MP_TAC RPOW_LE2 THEN ASM_SIMP_TAC[NORM_POS_LE; REAL_LT_IMP_LE]; X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o ISPEC `(lift o (\x. x rpow p) o drop) o (lift o (norm:real^N->real))` o MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] LIM_CONTINUOUS_FUNCTION)) THEN ASM_SIMP_TAC[o_THM; DROP_VEC; RPOW_ZERO; REAL_LT_IMP_NZ; LIFT_NUM] THEN REWRITE_TAC[o_THM; LIFT_DROP] THEN DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC CONTINUOUS_AT_COMPOSE THEN REWRITE_TAC[CONTINUOUS_AT_LIFT_NORM] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM LIFT_DROP] THEN REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN MATCH_MP_TAC REAL_CONTINUOUS_AT_RPOW THEN REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC]; STRIP_TAC] THEN MATCH_MP_TAC(TAUT `a /\ (a ==> b) ==> a /\ b`) THEN CONJ_TAC THENL [REWRITE_TAC[lspace; IN_ELIM_THM] THEN CONJ_TAC THENL [MATCH_MP_TAC MEASURABLE_ON_LIMIT THEN EXISTS_TAC `f:num->real^M->real^N` THEN EXISTS_TAC `k:real^M->bool` THEN ASM_REWRITE_TAC[] THEN RULE_ASSUM_TAC(REWRITE_RULE[lspace; IN_ELIM_THM]) THEN ASM_REWRITE_TAC[]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE [TAUT `a ==> b ==> c <=> b ==> a ==> c`] INTEGRABLE_SPIKE_SET)) THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] NEGLIGIBLE_SUBSET)) THEN SET_TAC[]]; DISCH_TAC] THEN SUBGOAL_THEN `!x. x IN s DIFF k ==> norm((g:real^M->real^N) x) <= norm((h:real^M->real^N) x)` ASSUME_TAC THENL [X_GEN_TAC `x:real^M` THEN STRIP_TAC THEN MATCH_MP_TAC(ISPEC `sequentially` LIM_NORM_UBOUND) THEN EXISTS_TAC `\n. (f:num->real^M->real^N) n x` THEN ASM_SIMP_TAC[TRIVIAL_LIMIT_SEQUENTIALLY] THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN RULE_ASSUM_TAC(REWRITE_RULE[IN_DIFF]) THEN ASM_SIMP_TAC[]; ALL_TAC] THEN MP_TAC(ISPECL [`\n x. lift(norm((f:num->real^M->real^N) n x - g x) rpow p)`; `(\x. vec 0):real^M->real^1`; `\x. lift(norm(&2 % (h:real^M->real^N) x) rpow p)`; `s DIFF k:real^M->bool`] DOMINATED_CONVERGENCE) THEN REWRITE_TAC[] THEN ANTS_TAC THENL [REPEAT CONJ_TAC THENL [X_GEN_TAC `k:num` THEN SUBGOAL_THEN `(\x. (f:num->real^M->real^N) k x - g x) IN lspace s p` MP_TAC THENL [ASM_SIMP_TAC[LSPACE_SUB; REAL_LT_IMP_LE; ETA_AX]; ALL_TAC] THEN DISCH_THEN(MP_TAC o MATCH_MP LSPACE_IMP_INTEGRABLE) THEN REWRITE_TAC[] THEN MATCH_MP_TAC INTEGRABLE_SPIKE_SET THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] NEGLIGIBLE_SUBSET)) THEN SET_TAC[]; REWRITE_TAC[NORM_MUL; RPOW_MUL; LIFT_CMUL] THEN MATCH_MP_TAC INTEGRABLE_CMUL THEN UNDISCH_TAC `(h:real^M->real^N) IN lspace s p` THEN DISCH_THEN(MP_TAC o MATCH_MP LSPACE_IMP_INTEGRABLE) THEN MATCH_MP_TAC INTEGRABLE_SPIKE_SET THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] NEGLIGIBLE_SUBSET)) THEN SET_TAC[]; MAP_EVERY X_GEN_TAC [`k:num`; `x:real^M`] THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN REWRITE_TAC[NORM_LIFT; REAL_ABS_RPOW; REAL_ABS_NORM; LIFT_DROP] THEN MATCH_MP_TAC RPOW_LE2 THEN ASM_SIMP_TAC[NORM_POS_LE; REAL_LT_IMP_LE] THEN MATCH_MP_TAC(NORM_ARITH `norm(x:real^N) <= norm(z) /\ norm(y) <= norm z ==> norm(x - y) <= norm(&2 % z:real^N)`) THEN ASM_SIMP_TAC[IN_DIFF]; X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN UNDISCH_TAC `!x. x IN s DIFF k ==> ((\n. (f:num->real^M->real^N) n x) --> g x) sequentially` THEN DISCH_THEN(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[] THEN GEN_REWRITE_TAC LAND_CONV [LIM_NULL] THEN DISCH_THEN(MP_TAC o ISPEC `(lift o (\x. x rpow p) o drop) o (lift o (norm:real^N->real))` o MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] LIM_CONTINUOUS_FUNCTION)) THEN ASM_SIMP_TAC[o_THM; DROP_VEC; RPOW_ZERO; REAL_LT_IMP_NZ; LIFT_NUM] THEN ASM_SIMP_TAC[NORM_0; RPOW_ZERO; REAL_LT_IMP_NZ; LIFT_DROP; LIFT_NUM] THEN DISCH_THEN MATCH_MP_TAC THEN MATCH_MP_TAC CONTINUOUS_AT_COMPOSE THEN REWRITE_TAC[CONTINUOUS_AT_LIFT_NORM] THEN GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM LIFT_DROP] THEN REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN MATCH_MP_TAC REAL_CONTINUOUS_AT_RPOW THEN REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC]; DISCH_THEN(MP_TAC o CONJUNCT2)] THEN REWRITE_TAC[INTEGRAL_0; TENDSTO_REAL; lnorm; o_DEF; LIFT_DROP; LIFT_NUM] THEN DISCH_THEN(MP_TAC o ISPEC `lift o (\x. x rpow inv p) o drop` o MATCH_MP(REWRITE_RULE[IMP_CONJ_ALT] LIM_CONTINUOUS_FUNCTION)) THEN ASM_SIMP_TAC[o_THM; DROP_VEC; RPOW_ZERO; REAL_LT_IMP_NZ; LIFT_NUM] THEN ASM_SIMP_TAC[REAL_INV_EQ_0; REAL_LT_IMP_NZ; LIFT_NUM] THEN ANTS_TAC THENL [GEN_REWRITE_TAC (RAND_CONV o RAND_CONV) [GSYM LIFT_DROP] THEN REWRITE_TAC[GSYM REAL_CONTINUOUS_CONTINUOUS_ATREAL] THEN MATCH_MP_TAC REAL_CONTINUOUS_AT_RPOW THEN REWRITE_TAC[REAL_LE_INV_EQ] THEN ASM_REAL_ARITH_TAC; ALL_TAC] THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ] LIM_TRANSFORM) THEN MATCH_MP_TAC LIM_EVENTUALLY THEN MATCH_MP_TAC ALWAYS_EVENTUALLY THEN X_GEN_TAC `k:num` THEN REWRITE_TAC[VECTOR_SUB_EQ] THEN AP_TERM_TAC THEN AP_THM_TAC THEN AP_TERM_TAC THEN AP_TERM_TAC THEN MATCH_MP_TAC INTEGRAL_SPIKE_SET THEN FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REWRITE_RULE[IMP_CONJ] NEGLIGIBLE_SUBSET)) THEN SET_TAC[]);; (* ------------------------------------------------------------------------- *) (* Approximation of functions in L_p by bounded ones and continuous ones, *) (* and (for bounded domain sets) by purely polynomial ones. *) (* ------------------------------------------------------------------------- *) let LSPACE_APPROXIMATE_BOUNDED = prove (`!f:real^M->real^N s p e. &0 < p /\ measurable s /\ f IN lspace s p /\ &0 < e ==> ?g. g IN lspace s p /\ bounded (IMAGE g s) /\ lnorm s p (\x. f x - g x) < e`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`(\n x. (lambda i. max (--(&n)) (min (&n) ((f:real^M->real^N)(x)$i)))) :num->real^M->real^N`; `f:real^M->real^N`; `f:real^M->real^N`; `s:real^M->bool`; `p:real`; `{}:real^M->bool`] LSPACE_DOMINATED_CONVERGENCE) THEN ASM_REWRITE_TAC[NEGLIGIBLE_EMPTY] THEN MATCH_MP_TAC(TAUT `b /\ c /\ a /\ (a /\ d ==> e) ==> (a /\ b /\ c ==> d) ==> e`) THEN REPEAT CONJ_TAC THENL [REPEAT STRIP_TAC THEN MATCH_MP_TAC NORM_LE_COMPONENTWISE THEN SIMP_TAC[LAMBDA_BETA] THEN REAL_ARITH_TAC; X_GEN_TAC `x:real^M` THEN REWRITE_TAC[DIFF_EMPTY] THEN DISCH_TAC THEN MATCH_MP_TAC LIM_EVENTUALLY THEN REWRITE_TAC[EVENTUALLY_SEQUENTIALLY] THEN MP_TAC(ISPEC `sup(IMAGE (\i. abs((f:real^M->real^N) x$i)) (1..dimindex(:N)))` REAL_ARCH_SIMPLE) THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN SIMP_TAC[REAL_SUP_LE_FINITE; FINITE_NUMSEG; NUMSEG_EMPTY; NOT_LT; DIMINDEX_GE_1; FINITE_IMAGE; IMAGE_EQ_EMPTY] THEN SIMP_TAC[FORALL_IN_IMAGE; IN_NUMSEG; CART_EQ; LAMBDA_BETA] THEN DISCH_TAC THEN X_GEN_TAC `n:num` THEN DISCH_TAC THEN X_GEN_TAC `i:num` THEN STRIP_TAC THEN MATCH_MP_TAC(REAL_ARITH `abs(x) <= n ==> max (--n) (min n x) = x`) THEN ASM_MESON_TAC[REAL_OF_NUM_LE; REAL_LE_TRANS]; X_GEN_TAC `n:num` THEN MP_TAC(ISPECL [`s:real^M->bool`; `p:real`; `vec n:real^N`] LSPACE_CONST) THEN ASM_REWRITE_TAC[] THEN UNDISCH_TAC `(f:real^M->real^N) IN lspace s p` THEN REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE [TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`] LSPACE_MIN)) THEN ASM_REWRITE_TAC[] THEN MP_TAC(ISPECL [`s:real^M->bool`; `p:real`; `--vec n:real^N`] LSPACE_CONST) THEN ASM_REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP (REWRITE_RULE [TAUT `a /\ b /\ c ==> d <=> a /\ b ==> c ==> d`] LSPACE_MAX)) THEN ASM_REWRITE_TAC[] THEN MATCH_MP_TAC(MESON[] `x = y ==> x IN s ==> y IN s`) THEN SIMP_TAC[FUN_EQ_THM; CART_EQ; LAMBDA_BETA; VEC_COMPONENT; VECTOR_NEG_COMPONENT] THEN REAL_ARITH_TAC; DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN REWRITE_TAC[REALLIM_SEQUENTIALLY] THEN DISCH_THEN(MP_TAC o SPEC `e:real`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(X_CHOOSE_THEN `n:num` (MP_TAC o SPEC `n:num`)) THEN REWRITE_TAC[LE_REFL; REAL_SUB_RZERO] THEN DISCH_TAC THEN EXISTS_TAC `(\x. (lambda i. max (-- &n) (min (&n) ((f:real^M->real^N) x$i)))) :real^M->real^N` THEN ASM_REWRITE_TAC[] THEN CONJ_TAC THENL [REWRITE_TAC[bounded; FORALL_IN_IMAGE] THEN EXISTS_TAC `&(dimindex(:N)) * &n` THEN X_GEN_TAC `x:real^M` THEN DISCH_TAC THEN W(MP_TAC o PART_MATCH lhand NORM_LE_L1 o lhand o snd) THEN MATCH_MP_TAC(REWRITE_RULE[IMP_CONJ_ALT] REAL_LE_TRANS) THEN GEN_REWRITE_TAC (RAND_CONV o LAND_CONV o RAND_CONV) [GSYM CARD_NUMSEG_1] THEN MATCH_MP_TAC SUM_BOUND THEN SIMP_TAC[FINITE_NUMSEG; IN_NUMSEG; LAMBDA_BETA] THEN REAL_ARITH_TAC; MATCH_MP_TAC(REAL_ARITH `abs(x) < e ==> x < e`) THEN ONCE_REWRITE_TAC[GSYM LNORM_NEG] THEN ASM_REWRITE_TAC[VECTOR_NEG_SUB]]]);; let LSPACE_APPROXIMATE_CONTINUOUS = prove (`!f:real^M->real^N s p e. &1 <= p /\ measurable s /\ f IN lspace s p /\ &0 < e ==> ?g. g continuous_on (:real^M) /\ g IN lspace s p /\ lnorm s p (\x. f x - g x) < e`, REPEAT STRIP_TAC THEN FIRST_ASSUM(ASSUME_TAC o MATCH_MP (REAL_ARITH `&1 <= p ==> &0 < p`)) THEN MP_TAC(ISPECL [`f:real^M->real^N`; `s:real^M->bool`; `p:real`; `e / &2`] LSPACE_APPROXIMATE_BOUNDED) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_THEN `h:real^M->real^N` STRIP_ASSUME_TAC) THEN FIRST_X_ASSUM(MP_TAC o GEN_REWRITE_RULE I [BOUNDED_POS]) THEN REWRITE_TAC[FORALL_IN_IMAGE] THEN DISCH_THEN(X_CHOOSE_THEN `B:real` STRIP_ASSUME_TAC) THEN SUBGOAL_THEN `?k g. negligible k /\ (!n. g n continuous_on (:real^M)) /\ (!n x. x IN s ==> norm(g n x:real^N) <= norm(B % vec 1:real^N)) /\ (!x. x IN (s DIFF k) ==> ((\n. g n x) --> h x) sequentially)` STRIP_ASSUME_TAC THENL [SUBGOAL_THEN `(h:real^M->real^N) measurable_on s` MP_TAC THENL [RULE_ASSUM_TAC(REWRITE_RULE[lspace; IN_ELIM_THM]) THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN REWRITE_TAC[measurable_on] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `k:real^M->bool` THEN DISCH_THEN(X_CHOOSE_THEN `g:num->real^M->real^N` STRIP_ASSUME_TAC) THEN EXISTS_TAC `(\n x. lambda i. max (--B) (min B (((g n x):real^N)$i))): num->real^M->real^N` THEN ASM_REWRITE_TAC[] THEN REPEAT CONJ_TAC THENL [X_GEN_TAC `n:num` THEN FIRST_X_ASSUM(MP_TAC o SPEC `n:num`) THEN MP_TAC(ISPECL [`(:real^M)`; `(lambda i. B):real^N`] CONTINUOUS_ON_CONST) THEN REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP CONTINUOUS_ON_MIN) THEN MP_TAC(ISPECL [`(:real^M)`; `(lambda i. --B):real^N`] CONTINUOUS_ON_CONST) THEN REWRITE_TAC[IMP_IMP] THEN DISCH_THEN(MP_TAC o MATCH_MP CONTINUOUS_ON_MAX) THEN MATCH_MP_TAC EQ_IMP THEN AP_THM_TAC THEN AP_TERM_TAC THEN SIMP_TAC[FUN_EQ_THM; CART_EQ; LAMBDA_BETA]; REPEAT STRIP_TAC THEN MATCH_MP_TAC NORM_LE_COMPONENTWISE THEN SIMP_TAC[LAMBDA_BETA; VEC_COMPONENT; VECTOR_MUL_COMPONENT] THEN REAL_ARITH_TAC; X_GEN_TAC `x:real^M` THEN REWRITE_TAC[IN_DIFF] THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[] THEN REWRITE_TAC[LIM_SEQUENTIALLY] THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `ee:real` THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `N:num` THEN MATCH_MP_TAC MONO_FORALL THEN X_GEN_TAC `n:num` THEN MATCH_MP_TAC MONO_IMP THEN REWRITE_TAC[] THEN MATCH_MP_TAC(NORM_ARITH `norm(c - a:real^N) <= norm(b - a) ==> dist(b,a) < ee ==> dist(c,a) < ee`) THEN MATCH_MP_TAC NORM_LE_COMPONENTWISE THEN SIMP_TAC[LAMBDA_BETA; VECTOR_SUB_COMPONENT] THEN X_GEN_TAC `k:num` THEN STRIP_TAC THEN FIRST_X_ASSUM(MP_TAC o SPEC `x:real^M`) THEN ASM_REWRITE_TAC[] THEN DISCH_THEN(MP_TAC o MATCH_MP NORM_BOUND_COMPONENT_LE) THEN DISCH_THEN(MP_TAC o SPEC `k:num`) THEN ASM_REWRITE_TAC[] THEN REAL_ARITH_TAC]; ALL_TAC] THEN SUBGOAL_THEN `!n. ((g:num->real^M->real^N) n) IN lspace s p` ASSUME_TAC THENL [X_GEN_TAC `n:num` THEN MATCH_MP_TAC(INST_TYPE [`:N`,`:P`] LSPACE_BOUNDED_MEASURABLE) THEN EXISTS_TAC `(\x. B % vec 1):real^M->real^N` THEN ASM_SIMP_TAC[LSPACE_CONST] THEN ONCE_REWRITE_TAC[GSYM MEASURABLE_ON_UNIV] THEN MATCH_MP_TAC(REWRITE_RULE[lebesgue_measurable; indicator] MEASURABLE_ON_RESTRICT) THEN ASM_SIMP_TAC[CONTINUOUS_IMP_MEASURABLE_ON; ETA_AX] THEN MATCH_MP_TAC INTEGRABLE_IMP_MEASURABLE THEN ASM_REWRITE_TAC[GSYM MEASURABLE_INTEGRABLE]; ALL_TAC] THEN MP_TAC(ISPECL [`g:num->real^M->real^N`; `h:real^M->real^N`; `(\x. B % vec 1):real^M->real^N`; `s:real^M->bool`; `p:real`; `k:real^M->bool`] LSPACE_DOMINATED_CONVERGENCE) THEN ASM_SIMP_TAC[LSPACE_CONST] THEN REWRITE_TAC[REALLIM_SEQUENTIALLY; REAL_SUB_RZERO] THEN DISCH_THEN(MP_TAC o SPEC `e / &2`) THEN ASM_REWRITE_TAC[REAL_HALF] THEN DISCH_THEN(X_CHOOSE_THEN `n:num` (MP_TAC o SPEC `n:num`)) THEN REWRITE_TAC[LE_REFL] THEN DISCH_TAC THEN EXISTS_TAC `(g:num->real^M->real^N) n` THEN ASM_REWRITE_TAC[] THEN SUBGOAL_THEN `(\x. f x - (g:num->real^M->real^N) n x) = (\x. (f x - h x) + --(g n x - h x))` SUBST1_TAC THENL [SIMP_TAC[FUN_EQ_THM] THEN VECTOR_ARITH_TAC; ALL_TAC] THEN W(MP_TAC o PART_MATCH (lhand o rand) LNORM_TRIANGLE o lhand o snd) THEN ASM_SIMP_TAC[LSPACE_SUB; ETA_AX; REAL_LT_IMP_LE; LSPACE_NEG] THEN MATCH_MP_TAC(REAL_ARITH `y < e / &2 /\ z < e / &2 ==> x <= y + z ==> x < e`) THEN ASM_SIMP_TAC[LNORM_NEG; REAL_ARITH `abs x < e ==> x < e`]);; let LSPACE_APPROXIMATE_VECTOR_POLYNOMIAL_FUNCTION = prove (`!f:real^M->real^N s p e. &1 <= p /\ bounded s /\ measurable s /\ f IN lspace s p /\ &0 < e ==> ?g. vector_polynomial_function g /\ g IN lspace s p /\ lnorm s p (\x. f x - g x) < e`, REPEAT STRIP_TAC THEN MP_TAC(ISPECL [`f:real^M->real^N`; `s:real^M->bool`; `p:real`; `e / &2`] LSPACE_APPROXIMATE_CONTINUOUS) THEN ASM_REWRITE_TAC[LEFT_IMP_EXISTS_THM; REAL_HALF] THEN X_GEN_TAC `g:real^M->real^N` THEN STRIP_TAC THEN MP_TAC(ISPECL [`g:real^M->real^N`; `closure s:real^M->bool`; `e / &2 / (measure(s:real^M->bool) rpow (inv p) + &1)`] STONE_WEIERSTRASS_VECTOR_POLYNOMIAL_FUNCTION) THEN ASM_REWRITE_TAC[REAL_HALF; COMPACT_CLOSURE] THEN ANTS_TAC THENL [CONJ_TAC THENL [ASM_MESON_TAC[CONTINUOUS_ON_SUBSET; SUBSET_UNIV]; MATCH_MP_TAC REAL_LT_DIV THEN ASM_REWRITE_TAC[REAL_HALF] THEN MATCH_MP_TAC(REAL_ARITH `&0 <= x ==> &0 < x + &1`) THEN ASM_SIMP_TAC[RPOW_POS_LE; MEASURE_POS_LE]]; MATCH_MP_TAC MONO_EXISTS THEN X_GEN_TAC `h:real^M->real^N` THEN STRIP_TAC THEN ASM_REWRITE_TAC[]] THEN MATCH_MP_TAC(TAUT `p /\ (p ==> q) ==> p /\ q`) THEN CONJ_TAC THENL [MATCH_MP_TAC LSPACE_BOUNDED_MEASURABLE_SIMPLE THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ASM_REWRITE_TAC[]] THEN ASM_SIMP_TAC[CONTINUOUS_IMP_MEASURABLE_ON_LEBESGUE_MEASURABLE_SUBSET; MEASURABLE_IMP_LEBESGUE_MEASURABLE; CONTINUOUS_ON_VECTOR_POLYNOMIAL_FUNCTION] THEN MATCH_MP_TAC BOUNDED_SUBSET THEN EXISTS_TAC `IMAGE (h:real^M->real^N) (closure s)` THEN SIMP_TAC[IMAGE_SUBSET; CLOSURE_SUBSET] THEN MATCH_MP_TAC COMPACT_IMP_BOUNDED THEN MATCH_MP_TAC COMPACT_CONTINUOUS_IMAGE THEN ASM_SIMP_TAC[CONTINUOUS_ON_VECTOR_POLYNOMIAL_FUNCTION; COMPACT_CLOSURE]; DISCH_TAC] THEN TRANS_TAC REAL_LET_TRANS `lnorm s p (\x. (f:real^M->real^N) x - g x) + lnorm s p (\x. g x - h x)` THEN CONJ_TAC THENL [W(MP_TAC o PART_MATCH (rand o rand) LNORM_TRIANGLE o rand o snd) THEN ASM_SIMP_TAC[LSPACE_SUB; REAL_ARITH `&1 <= p ==> &0 <= p`] THEN REWRITE_TAC[VECTOR_ARITH `(f - g) + (g - h):real^N = f - h`]; FIRST_X_ASSUM(MATCH_MP_TAC o MATCH_MP (REAL_ARITH `x < e / &2 ==> y <= e / &2 ==> x + y < e`))] THEN TRANS_TAC REAL_LE_TRANS `lnorm (s:real^M->bool) p (\x. lift(e / &2 / (measure s rpow inv p + &1)))` THEN CONJ_TAC THENL [MATCH_MP_TAC LNORM_MONO THEN EXISTS_TAC `{}:real^M->bool` THEN REWRITE_TAC[NEGLIGIBLE_EMPTY; DIFF_EMPTY] THEN CONJ_TAC THENL [ASM_REAL_ARITH_TAC; ALL_TAC] THEN ASM_SIMP_TAC[LSPACE_SUB; LSPACE_CONST; REAL_ARITH `&1 <= p ==> &0 <= p`; NORM_LIFT; REAL_ARITH `x < y ==> x <= abs y`; REWRITE_RULE[SUBSET] CLOSURE_SUBSET]; ASM_SIMP_TAC[LNORM_CONST; REAL_ARITH `&1 <= p ==> &0 < p`] THEN REWRITE_TAC[NORM_LIFT; REAL_ABS_DIV; REAL_ABS_NUM] THEN ASM_SIMP_TAC[REAL_ARITH `&0 < e ==> x * abs e / &2 / y = (x * e / &2) / y`] THEN ASM (CONV_TAC o GEN_SIMPLIFY_CONV TOP_DEPTH_SQCONV (basic_ss []) 4) [MEASURE_POS_LE; RPOW_POS_LE; REAL_LE_LDIV_EQ; REAL_ARITH `abs x = if &0 < x then x else --x`; REAL_ARITH `&0 <= x ==> &0 < x + &1`] THEN REWRITE_TAC[REAL_ARITH `m * e / &2 <= e / &2 * n <=> e * m <= e * n`] THEN ASM_SIMP_TAC[REAL_LE_LMUL_EQ] THEN REAL_ARITH_TAC]);;