/- Copyright (c) 2021 Jakob Scholbach. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jakob Scholbach -/ import algebra.char_p.basic import algebra.char_zero import data.nat.prime /-! # Exponential characteristic This file defines the exponential characteristic and establishes a few basic results relating it to the (ordinary characteristic). The definition is stated for a semiring, but the actual results are for nontrivial rings (as far as exponential characteristic one is concerned), respectively a ring without zero-divisors (for prime characteristic). ## Main results - `exp_char`: the definition of exponential characteristic - `exp_char_is_prime_or_one`: the exponential characteristic is a prime or one - `char_eq_exp_char_iff`: the characteristic equals the exponential characteristic iff the characteristic is prime ## Tags exponential characteristic, characteristic -/ universe u variables (R : Type u) section semiring variables [semiring R] /-- The definition of the exponential characteristic of a semiring. -/ class inductive exp_char (R : Type u) [semiring R] : ℕ → Prop | zero [char_zero R] : exp_char 1 | prime {q : ℕ} (hprime : q.prime) [hchar : char_p R q] : exp_char q /-- The exponential characteristic is one if the characteristic is zero. -/ lemma exp_char_one_of_char_zero (q : ℕ) [hp : char_p R 0] [hq : exp_char R q] : q = 1 := begin casesI hq with q hq_one hq_prime, { refl }, { exact false.elim (lt_irrefl _ ((hp.eq R hq_hchar).symm ▸ hq_prime : (0 : ℕ).prime).pos) } end /-- The characteristic equals the exponential characteristic iff the former is prime. -/ theorem char_eq_exp_char_iff (p q : ℕ) [hp : char_p R p] [hq : exp_char R q] : p = q ↔ p.prime := begin casesI hq with q hq_one hq_prime, { apply iff_of_false, { unfreezingI {rintro rfl}, exact one_ne_zero (hp.eq R (char_p.of_char_zero R)) }, { intro pprime, rw (char_p.eq R hp infer_instance : p = 0) at pprime, exact nat.not_prime_zero pprime } }, { exact ⟨λ hpq, hpq.symm ▸ hq_prime, λ _, char_p.eq R hp hq_hchar⟩ }, end section nontrivial variables [nontrivial R] /-- The exponential characteristic is one if the characteristic is zero. -/ lemma char_zero_of_exp_char_one (p : ℕ) [hp : char_p R p] [hq : exp_char R 1] : p = 0 := begin casesI hq, { exact char_p.eq R hp infer_instance, }, { exact false.elim (char_p.char_ne_one R 1 rfl), } end /-- The characteristic is zero if the exponential characteristic is one. -/ @[priority 100] -- see Note [lower instance priority] instance char_zero_of_exp_char_one' [hq : exp_char R 1] : char_zero R := begin casesI hq, { assumption, }, { exact false.elim (char_p.char_ne_one R 1 rfl), } end /-- The exponential characteristic is one iff the characteristic is zero. -/ theorem exp_char_one_iff_char_zero (p q : ℕ) [char_p R p] [exp_char R q] : q = 1 ↔ p = 0 := begin split, { unfreezingI {rintro rfl}, exact char_zero_of_exp_char_one R p, }, { unfreezingI {rintro rfl}, exact exp_char_one_of_char_zero R q, } end section no_zero_divisors variable [no_zero_divisors R] /-- A helper lemma: the characteristic is prime if it is non-zero. -/ lemma char_prime_of_ne_zero {p : ℕ} [hp : char_p R p] (p_ne_zero : p ≠ 0) : nat.prime p := begin cases char_p.char_is_prime_or_zero R p with h h, { exact h, }, { contradiction, } end /-- The exponential characteristic is a prime number or one. -/ theorem exp_char_is_prime_or_one (q : ℕ) [hq : exp_char R q] : nat.prime q ∨ q = 1 := or_iff_not_imp_right.mpr $ λ h, begin casesI char_p.exists R with p hp, have p_ne_zero : p ≠ 0, { intro p_zero, haveI : char_p R 0, { rwa ←p_zero }, have : q = 1 := exp_char_one_of_char_zero R q, contradiction, }, have p_eq_q : p = q := (char_eq_exp_char_iff R p q).mpr (char_prime_of_ne_zero R p_ne_zero), cases char_p.char_is_prime_or_zero R p with pprime, { rwa p_eq_q at pprime }, { contradiction }, end end no_zero_divisors end nontrivial end semiring