/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Mario Carneiro, Johannes Hölzl -/ import algebra.abs import algebra.order.sub /-! # Ordered groups This file develops the basics of ordered groups. ## Implementation details Unfortunately, the number of `'` appended to lemmas in this file may differ between the multiplicative and the additive version of a lemma. The reason is that we did not want to change existing names in the library. -/ set_option old_structure_cmd true open function universe u variable {α : Type u} /-- An ordered additive commutative group is an additive commutative group with a partial order in which addition is strictly monotone. -/ @[protect_proj, ancestor add_comm_group partial_order] class ordered_add_comm_group (α : Type u) extends add_comm_group α, partial_order α := (add_le_add_left : ∀ a b : α, a ≤ b → ∀ c : α, c + a ≤ c + b) /-- An ordered commutative group is an commutative group with a partial order in which multiplication is strictly monotone. -/ @[protect_proj, ancestor comm_group partial_order] class ordered_comm_group (α : Type u) extends comm_group α, partial_order α := (mul_le_mul_left : ∀ a b : α, a ≤ b → ∀ c : α, c * a ≤ c * b) attribute [to_additive] ordered_comm_group @[to_additive] instance ordered_comm_group.to_covariant_class_left_le (α : Type u) [ordered_comm_group α] : covariant_class α α (*) (≤) := { elim := λ a b c bc, ordered_comm_group.mul_le_mul_left b c bc a } /--The units of an ordered commutative monoid form an ordered commutative group. -/ @[to_additive "The units of an ordered commutative additive monoid form an ordered commutative additive group."] instance units.ordered_comm_group [ordered_comm_monoid α] : ordered_comm_group αˣ := { mul_le_mul_left := λ a b h c, (mul_le_mul_left' (h : (a : α) ≤ b) _ : (c : α) * a ≤ c * b), .. units.partial_order, .. units.comm_group } @[priority 100, to_additive] -- see Note [lower instance priority] instance ordered_comm_group.to_ordered_cancel_comm_monoid (α : Type u) [s : ordered_comm_group α] : ordered_cancel_comm_monoid α := { mul_left_cancel := λ a b c, (mul_right_inj a).mp, le_of_mul_le_mul_left := λ a b c, (mul_le_mul_iff_left a).mp, ..s } @[priority 100, to_additive] instance ordered_comm_group.has_exists_mul_of_le (α : Type u) [ordered_comm_group α] : has_exists_mul_of_le α := ⟨λ a b hab, ⟨b * a⁻¹, (mul_inv_cancel_comm_assoc a b).symm⟩⟩ @[to_additive] instance [h : has_inv α] : has_inv αᵒᵈ := h @[to_additive] instance [h : has_div α] : has_div αᵒᵈ := h @[to_additive] instance [h : has_involutive_inv α] : has_involutive_inv αᵒᵈ := h @[to_additive] instance [h : div_inv_monoid α] : div_inv_monoid αᵒᵈ := h @[to_additive order_dual.subtraction_monoid] instance [h : division_monoid α] : division_monoid αᵒᵈ := h @[to_additive order_dual.subtraction_comm_monoid] instance [h : division_comm_monoid α] : division_comm_monoid αᵒᵈ := h @[to_additive] instance [h : group α] : group αᵒᵈ := h @[to_additive] instance [h : comm_group α] : comm_group αᵒᵈ := h instance [h : group_with_zero α] : group_with_zero αᵒᵈ := h instance [h : comm_group_with_zero α] : comm_group_with_zero αᵒᵈ := h @[to_additive] instance [ordered_comm_group α] : ordered_comm_group αᵒᵈ := { .. order_dual.ordered_comm_monoid, .. order_dual.group } section group variables [group α] section typeclasses_left_le variables [has_le α] [covariant_class α α (*) (≤)] {a b c d : α} /-- Uses `left` co(ntra)variant. -/ @[simp, to_additive left.neg_nonpos_iff] lemma left.inv_le_one_iff : a⁻¹ ≤ 1 ↔ 1 ≤ a := by { rw [← mul_le_mul_iff_left a], simp } /-- Uses `left` co(ntra)variant. -/ @[simp, to_additive left.nonneg_neg_iff] lemma left.one_le_inv_iff : 1 ≤ a⁻¹ ↔ a ≤ 1 := by { rw [← mul_le_mul_iff_left a], simp } @[simp, to_additive] lemma le_inv_mul_iff_mul_le : b ≤ a⁻¹ * c ↔ a * b ≤ c := by { rw ← mul_le_mul_iff_left a, simp } @[simp, to_additive] lemma inv_mul_le_iff_le_mul : b⁻¹ * a ≤ c ↔ a ≤ b * c := by rw [← mul_le_mul_iff_left b, mul_inv_cancel_left] @[to_additive neg_le_iff_add_nonneg'] lemma inv_le_iff_one_le_mul' : a⁻¹ ≤ b ↔ 1 ≤ a * b := (mul_le_mul_iff_left a).symm.trans $ by rw mul_inv_self @[to_additive] lemma le_inv_iff_mul_le_one_left : a ≤ b⁻¹ ↔ b * a ≤ 1 := (mul_le_mul_iff_left b).symm.trans $ by rw mul_inv_self @[to_additive] lemma le_inv_mul_iff_le : 1 ≤ b⁻¹ * a ↔ b ≤ a := by rw [← mul_le_mul_iff_left b, mul_one, mul_inv_cancel_left] @[to_additive] lemma inv_mul_le_one_iff : a⁻¹ * b ≤ 1 ↔ b ≤ a := trans (inv_mul_le_iff_le_mul) $ by rw mul_one end typeclasses_left_le section typeclasses_left_lt variables [has_lt α] [covariant_class α α (*) (<)] {a b c : α} /-- Uses `left` co(ntra)variant. -/ @[simp, to_additive left.neg_pos_iff] lemma left.one_lt_inv_iff : 1 < a⁻¹ ↔ a < 1 := by rw [← mul_lt_mul_iff_left a, mul_inv_self, mul_one] /-- Uses `left` co(ntra)variant. -/ @[simp, to_additive left.neg_neg_iff] lemma left.inv_lt_one_iff : a⁻¹ < 1 ↔ 1 < a := by rw [← mul_lt_mul_iff_left a, mul_inv_self, mul_one] @[simp, to_additive] lemma lt_inv_mul_iff_mul_lt : b < a⁻¹ * c ↔ a * b < c := by { rw [← mul_lt_mul_iff_left a], simp } @[simp, to_additive] lemma inv_mul_lt_iff_lt_mul : b⁻¹ * a < c ↔ a < b * c := by rw [← mul_lt_mul_iff_left b, mul_inv_cancel_left] @[to_additive] lemma inv_lt_iff_one_lt_mul' : a⁻¹ < b ↔ 1 < a * b := (mul_lt_mul_iff_left a).symm.trans $ by rw mul_inv_self @[to_additive] lemma lt_inv_iff_mul_lt_one' : a < b⁻¹ ↔ b * a < 1 := (mul_lt_mul_iff_left b).symm.trans $ by rw mul_inv_self @[to_additive] lemma lt_inv_mul_iff_lt : 1 < b⁻¹ * a ↔ b < a := by rw [← mul_lt_mul_iff_left b, mul_one, mul_inv_cancel_left] @[to_additive] lemma inv_mul_lt_one_iff : a⁻¹ * b < 1 ↔ b < a := trans (inv_mul_lt_iff_lt_mul) $ by rw mul_one end typeclasses_left_lt section typeclasses_right_le variables [has_le α] [covariant_class α α (swap (*)) (≤)] {a b c : α} /-- Uses `right` co(ntra)variant. -/ @[simp, to_additive right.neg_nonpos_iff] lemma right.inv_le_one_iff : a⁻¹ ≤ 1 ↔ 1 ≤ a := by { rw [← mul_le_mul_iff_right a], simp } /-- Uses `right` co(ntra)variant. -/ @[simp, to_additive right.nonneg_neg_iff] lemma right.one_le_inv_iff : 1 ≤ a⁻¹ ↔ a ≤ 1 := by { rw [← mul_le_mul_iff_right a], simp } @[to_additive neg_le_iff_add_nonneg] lemma inv_le_iff_one_le_mul : a⁻¹ ≤ b ↔ 1 ≤ b * a := (mul_le_mul_iff_right a).symm.trans $ by rw inv_mul_self @[to_additive] lemma le_inv_iff_mul_le_one_right : a ≤ b⁻¹ ↔ a * b ≤ 1 := (mul_le_mul_iff_right b).symm.trans $ by rw inv_mul_self @[simp, to_additive] lemma mul_inv_le_iff_le_mul : a * b⁻¹ ≤ c ↔ a ≤ c * b := (mul_le_mul_iff_right b).symm.trans $ by rw inv_mul_cancel_right @[simp, to_additive] lemma le_mul_inv_iff_mul_le : c ≤ a * b⁻¹ ↔ c * b ≤ a := (mul_le_mul_iff_right b).symm.trans $ by rw inv_mul_cancel_right @[simp, to_additive] lemma mul_inv_le_one_iff_le : a * b⁻¹ ≤ 1 ↔ a ≤ b := mul_inv_le_iff_le_mul.trans $ by rw one_mul @[to_additive] lemma le_mul_inv_iff_le : 1 ≤ a * b⁻¹ ↔ b ≤ a := by rw [← mul_le_mul_iff_right b, one_mul, inv_mul_cancel_right] @[to_additive] lemma mul_inv_le_one_iff : b * a⁻¹ ≤ 1 ↔ b ≤ a := trans (mul_inv_le_iff_le_mul) $ by rw one_mul end typeclasses_right_le section typeclasses_right_lt variables [has_lt α] [covariant_class α α (swap (*)) (<)] {a b c : α} /-- Uses `right` co(ntra)variant. -/ @[simp, to_additive right.neg_neg_iff "Uses `right` co(ntra)variant."] lemma right.inv_lt_one_iff : a⁻¹ < 1 ↔ 1 < a := by rw [← mul_lt_mul_iff_right a, inv_mul_self, one_mul] /-- Uses `right` co(ntra)variant. -/ @[simp, to_additive right.neg_pos_iff "Uses `right` co(ntra)variant."] lemma right.one_lt_inv_iff : 1 < a⁻¹ ↔ a < 1 := by rw [← mul_lt_mul_iff_right a, inv_mul_self, one_mul] @[to_additive] lemma inv_lt_iff_one_lt_mul : a⁻¹ < b ↔ 1 < b * a := (mul_lt_mul_iff_right a).symm.trans $ by rw inv_mul_self @[to_additive] lemma lt_inv_iff_mul_lt_one : a < b⁻¹ ↔ a * b < 1 := (mul_lt_mul_iff_right b).symm.trans $ by rw inv_mul_self @[simp, to_additive] lemma mul_inv_lt_iff_lt_mul : a * b⁻¹ < c ↔ a < c * b := by rw [← mul_lt_mul_iff_right b, inv_mul_cancel_right] @[simp, to_additive] lemma lt_mul_inv_iff_mul_lt : c < a * b⁻¹ ↔ c * b < a := (mul_lt_mul_iff_right b).symm.trans $ by rw inv_mul_cancel_right @[simp, to_additive] lemma inv_mul_lt_one_iff_lt : a * b⁻¹ < 1 ↔ a < b := by rw [← mul_lt_mul_iff_right b, inv_mul_cancel_right, one_mul] @[to_additive] lemma lt_mul_inv_iff_lt : 1 < a * b⁻¹ ↔ b < a := by rw [← mul_lt_mul_iff_right b, one_mul, inv_mul_cancel_right] @[to_additive] lemma mul_inv_lt_one_iff : b * a⁻¹ < 1 ↔ b < a := trans (mul_inv_lt_iff_lt_mul) $ by rw one_mul end typeclasses_right_lt section typeclasses_left_right_le variables [has_le α] [covariant_class α α (*) (≤)] [covariant_class α α (swap (*)) (≤)] {a b c d : α} @[simp, to_additive] lemma inv_le_inv_iff : a⁻¹ ≤ b⁻¹ ↔ b ≤ a := by { rw [← mul_le_mul_iff_left a, ← mul_le_mul_iff_right b], simp } alias neg_le_neg_iff ↔ le_of_neg_le_neg _ section variable (α) /-- `x ↦ x⁻¹` as an order-reversing equivalence. -/ @[to_additive "`x ↦ -x` as an order-reversing equivalence.", simps] def order_iso.inv : α ≃o αᵒᵈ := { to_equiv := (equiv.inv α).trans order_dual.to_dual, map_rel_iff' := λ a b, @inv_le_inv_iff α _ _ _ _ _ _ } end @[to_additive neg_le] lemma inv_le' : a⁻¹ ≤ b ↔ b⁻¹ ≤ a := (order_iso.inv α).symm_apply_le alias inv_le' ↔ inv_le_of_inv_le' _ attribute [to_additive neg_le_of_neg_le] inv_le_of_inv_le' @[to_additive le_neg] lemma le_inv' : a ≤ b⁻¹ ↔ b ≤ a⁻¹ := (order_iso.inv α).le_symm_apply @[to_additive] lemma mul_inv_le_inv_mul_iff : a * b⁻¹ ≤ d⁻¹ * c ↔ d * a ≤ c * b := by rw [← mul_le_mul_iff_left d, ← mul_le_mul_iff_right b, mul_inv_cancel_left, mul_assoc, inv_mul_cancel_right] @[simp, to_additive] lemma div_le_self_iff (a : α) {b : α} : a / b ≤ a ↔ 1 ≤ b := by simp [div_eq_mul_inv] @[simp, to_additive] lemma le_div_self_iff (a : α) {b : α} : a ≤ a / b ↔ b ≤ 1 := by simp [div_eq_mul_inv] alias sub_le_self_iff ↔ _ sub_le_self end typeclasses_left_right_le section typeclasses_left_right_lt variables [has_lt α] [covariant_class α α (*) (<)] [covariant_class α α (swap (*)) (<)] {a b c d : α} @[simp, to_additive] lemma inv_lt_inv_iff : a⁻¹ < b⁻¹ ↔ b < a := by { rw [← mul_lt_mul_iff_left a, ← mul_lt_mul_iff_right b], simp } @[to_additive neg_lt] lemma inv_lt' : a⁻¹ < b ↔ b⁻¹ < a := by rw [← inv_lt_inv_iff, inv_inv] @[to_additive lt_neg] lemma lt_inv' : a < b⁻¹ ↔ b < a⁻¹ := by rw [← inv_lt_inv_iff, inv_inv] alias lt_inv' ↔ lt_inv_of_lt_inv _ attribute [to_additive] lt_inv_of_lt_inv alias inv_lt' ↔ inv_lt_of_inv_lt' _ attribute [to_additive neg_lt_of_neg_lt] inv_lt_of_inv_lt' @[to_additive] lemma mul_inv_lt_inv_mul_iff : a * b⁻¹ < d⁻¹ * c ↔ d * a < c * b := by rw [← mul_lt_mul_iff_left d, ← mul_lt_mul_iff_right b, mul_inv_cancel_left, mul_assoc, inv_mul_cancel_right] @[simp, to_additive] lemma div_lt_self_iff (a : α) {b : α} : a / b < a ↔ 1 < b := by simp [div_eq_mul_inv] alias sub_lt_self_iff ↔ _ sub_lt_self end typeclasses_left_right_lt section pre_order variable [preorder α] section left_le variables [covariant_class α α (*) (≤)] {a : α} @[to_additive] lemma left.inv_le_self (h : 1 ≤ a) : a⁻¹ ≤ a := le_trans (left.inv_le_one_iff.mpr h) h alias left.neg_le_self ← neg_le_self @[to_additive] lemma left.self_le_inv (h : a ≤ 1) : a ≤ a⁻¹ := le_trans h (left.one_le_inv_iff.mpr h) end left_le section left_lt variables [covariant_class α α (*) (<)] {a : α} @[to_additive] lemma left.inv_lt_self (h : 1 < a) : a⁻¹ < a := (left.inv_lt_one_iff.mpr h).trans h alias left.neg_lt_self ← neg_lt_self @[to_additive] lemma left.self_lt_inv (h : a < 1) : a < a⁻¹ := lt_trans h (left.one_lt_inv_iff.mpr h) end left_lt section right_le variables [covariant_class α α (swap (*)) (≤)] {a : α} @[to_additive] lemma right.inv_le_self (h : 1 ≤ a) : a⁻¹ ≤ a := le_trans (right.inv_le_one_iff.mpr h) h @[to_additive] lemma right.self_le_inv (h : a ≤ 1) : a ≤ a⁻¹ := le_trans h (right.one_le_inv_iff.mpr h) end right_le section right_lt variables [covariant_class α α (swap (*)) (<)] {a : α} @[to_additive] lemma right.inv_lt_self (h : 1 < a) : a⁻¹ < a := (right.inv_lt_one_iff.mpr h).trans h @[to_additive] lemma right.self_lt_inv (h : a < 1) : a < a⁻¹ := lt_trans h (right.one_lt_inv_iff.mpr h) end right_lt end pre_order end group section comm_group variables [comm_group α] section has_le variables [has_le α] [covariant_class α α (*) (≤)] {a b c d : α} @[to_additive] lemma inv_mul_le_iff_le_mul' : c⁻¹ * a ≤ b ↔ a ≤ b * c := by rw [inv_mul_le_iff_le_mul, mul_comm] @[simp, to_additive] lemma mul_inv_le_iff_le_mul' : a * b⁻¹ ≤ c ↔ a ≤ b * c := by rw [← inv_mul_le_iff_le_mul, mul_comm] @[to_additive add_neg_le_add_neg_iff] lemma mul_inv_le_mul_inv_iff' : a * b⁻¹ ≤ c * d⁻¹ ↔ a * d ≤ c * b := by rw [mul_comm c, mul_inv_le_inv_mul_iff, mul_comm] end has_le section has_lt variables [has_lt α] [covariant_class α α (*) (<)] {a b c d : α} @[to_additive] lemma inv_mul_lt_iff_lt_mul' : c⁻¹ * a < b ↔ a < b * c := by rw [inv_mul_lt_iff_lt_mul, mul_comm] @[simp, to_additive] lemma mul_inv_lt_iff_le_mul' : a * b⁻¹ < c ↔ a < b * c := by rw [← inv_mul_lt_iff_lt_mul, mul_comm] @[to_additive add_neg_lt_add_neg_iff] lemma mul_inv_lt_mul_inv_iff' : a * b⁻¹ < c * d⁻¹ ↔ a * d < c * b := by rw [mul_comm c, mul_inv_lt_inv_mul_iff, mul_comm] end has_lt end comm_group alias le_inv' ↔ le_inv_of_le_inv _ attribute [to_additive] le_inv_of_le_inv alias left.inv_le_one_iff ↔ one_le_of_inv_le_one _ attribute [to_additive] one_le_of_inv_le_one alias left.one_le_inv_iff ↔ le_one_of_one_le_inv _ attribute [to_additive nonpos_of_neg_nonneg] le_one_of_one_le_inv alias inv_lt_inv_iff ↔ lt_of_inv_lt_inv _ attribute [to_additive] lt_of_inv_lt_inv alias left.inv_lt_one_iff ↔ one_lt_of_inv_lt_one _ attribute [to_additive] one_lt_of_inv_lt_one alias left.inv_lt_one_iff ← inv_lt_one_iff_one_lt attribute [to_additive] inv_lt_one_iff_one_lt alias left.inv_lt_one_iff ← inv_lt_one' attribute [to_additive neg_lt_zero] inv_lt_one' alias left.one_lt_inv_iff ↔ inv_of_one_lt_inv _ attribute [to_additive neg_of_neg_pos] inv_of_one_lt_inv alias left.one_lt_inv_iff ↔ _ one_lt_inv_of_inv attribute [to_additive neg_pos_of_neg] one_lt_inv_of_inv alias le_inv_mul_iff_mul_le ↔ mul_le_of_le_inv_mul _ attribute [to_additive] mul_le_of_le_inv_mul alias le_inv_mul_iff_mul_le ↔ _ le_inv_mul_of_mul_le attribute [to_additive] le_inv_mul_of_mul_le alias inv_mul_le_iff_le_mul ↔ _ inv_mul_le_of_le_mul attribute [to_additive] inv_mul_le_iff_le_mul alias lt_inv_mul_iff_mul_lt ↔ mul_lt_of_lt_inv_mul _ attribute [to_additive] mul_lt_of_lt_inv_mul alias lt_inv_mul_iff_mul_lt ↔ _ lt_inv_mul_of_mul_lt attribute [to_additive] lt_inv_mul_of_mul_lt alias inv_mul_lt_iff_lt_mul ↔ lt_mul_of_inv_mul_lt inv_mul_lt_of_lt_mul attribute [to_additive] lt_mul_of_inv_mul_lt attribute [to_additive] inv_mul_lt_of_lt_mul alias lt_mul_of_inv_mul_lt ← lt_mul_of_inv_mul_lt_left attribute [to_additive] lt_mul_of_inv_mul_lt_left alias left.inv_le_one_iff ← inv_le_one' attribute [to_additive neg_nonpos] inv_le_one' alias left.one_le_inv_iff ← one_le_inv' attribute [to_additive neg_nonneg] one_le_inv' alias left.one_lt_inv_iff ← one_lt_inv' attribute [to_additive neg_pos] one_lt_inv' alias mul_lt_mul_left' ← ordered_comm_group.mul_lt_mul_left' attribute [to_additive ordered_add_comm_group.add_lt_add_left] ordered_comm_group.mul_lt_mul_left' alias le_of_mul_le_mul_left' ← ordered_comm_group.le_of_mul_le_mul_left attribute [to_additive ordered_add_comm_group.le_of_add_le_add_left] ordered_comm_group.le_of_mul_le_mul_left alias lt_of_mul_lt_mul_left' ← ordered_comm_group.lt_of_mul_lt_mul_left attribute [to_additive ordered_add_comm_group.lt_of_add_lt_add_left] ordered_comm_group.lt_of_mul_lt_mul_left /-- Pullback an `ordered_comm_group` under an injective map. See note [reducible non-instances]. -/ @[reducible, to_additive function.injective.ordered_add_comm_group "Pullback an `ordered_add_comm_group` under an injective map."] def function.injective.ordered_comm_group [ordered_comm_group α] {β : Type*} [has_one β] [has_mul β] [has_inv β] [has_div β] [has_pow β ℕ] [has_pow β ℤ] (f : β → α) (hf : function.injective f) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f (x⁻¹) = (f x)⁻¹) (div : ∀ x y, f (x / y) = f x / f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) (zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n) : ordered_comm_group β := { ..partial_order.lift f hf, ..hf.ordered_comm_monoid f one mul npow, ..hf.comm_group f one mul inv div npow zpow } /- Most of the lemmas that are primed in this section appear in ordered_field. -/ /- I (DT) did not try to minimise the assumptions. -/ section group variables [group α] [has_le α] section right variables [covariant_class α α (swap (*)) (≤)] {a b c d : α} @[simp, to_additive] lemma div_le_div_iff_right (c : α) : a / c ≤ b / c ↔ a ≤ b := by simpa only [div_eq_mul_inv] using mul_le_mul_iff_right _ @[to_additive sub_le_sub_right] lemma div_le_div_right' (h : a ≤ b) (c : α) : a / c ≤ b / c := (div_le_div_iff_right c).2 h @[simp, to_additive sub_nonneg] lemma one_le_div' : 1 ≤ a / b ↔ b ≤ a := by rw [← mul_le_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right] alias sub_nonneg ↔ le_of_sub_nonneg sub_nonneg_of_le @[simp, to_additive sub_nonpos] lemma div_le_one' : a / b ≤ 1 ↔ a ≤ b := by rw [← mul_le_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right] alias sub_nonpos ↔ le_of_sub_nonpos sub_nonpos_of_le @[to_additive] lemma le_div_iff_mul_le : a ≤ c / b ↔ a * b ≤ c := by rw [← mul_le_mul_iff_right b, div_eq_mul_inv, inv_mul_cancel_right] alias le_sub_iff_add_le ↔ add_le_of_le_sub_right le_sub_right_of_add_le @[to_additive] lemma div_le_iff_le_mul : a / c ≤ b ↔ a ≤ b * c := by rw [← mul_le_mul_iff_right c, div_eq_mul_inv, inv_mul_cancel_right] -- TODO: Should we get rid of `sub_le_iff_le_add` in favor of -- (a renamed version of) `tsub_le_iff_right`? @[priority 100] -- see Note [lower instance priority] instance add_group.to_has_ordered_sub {α : Type*} [add_group α] [has_le α] [covariant_class α α (swap (+)) (≤)] : has_ordered_sub α := ⟨λ a b c, sub_le_iff_le_add⟩ /-- `equiv.mul_right` as an `order_iso`. See also `order_embedding.mul_right`. -/ @[to_additive "`equiv.add_right` as an `order_iso`. See also `order_embedding.add_right`.", simps to_equiv apply {simp_rhs := tt}] def order_iso.mul_right (a : α) : α ≃o α := { map_rel_iff' := λ _ _, mul_le_mul_iff_right a, to_equiv := equiv.mul_right a } @[simp, to_additive] lemma order_iso.mul_right_symm (a : α) : (order_iso.mul_right a).symm = order_iso.mul_right a⁻¹ := by { ext x, refl } end right section left variables [covariant_class α α (*) (≤)] /-- `equiv.mul_left` as an `order_iso`. See also `order_embedding.mul_left`. -/ @[to_additive "`equiv.add_left` as an `order_iso`. See also `order_embedding.add_left`.", simps to_equiv apply {simp_rhs := tt}] def order_iso.mul_left (a : α) : α ≃o α := { map_rel_iff' := λ _ _, mul_le_mul_iff_left a, to_equiv := equiv.mul_left a } @[simp, to_additive] lemma order_iso.mul_left_symm (a : α) : (order_iso.mul_left a).symm = order_iso.mul_left a⁻¹ := by { ext x, refl } variables [covariant_class α α (swap (*)) (≤)] {a b c : α} @[simp, to_additive] lemma div_le_div_iff_left (a : α) : a / b ≤ a / c ↔ c ≤ b := by rw [div_eq_mul_inv, div_eq_mul_inv, ← mul_le_mul_iff_left a⁻¹, inv_mul_cancel_left, inv_mul_cancel_left, inv_le_inv_iff] @[to_additive sub_le_sub_left] lemma div_le_div_left' (h : a ≤ b) (c : α) : c / b ≤ c / a := (div_le_div_iff_left c).2 h end left end group section comm_group variables [comm_group α] section has_le variables [has_le α] [covariant_class α α (*) (≤)] {a b c d : α} @[to_additive sub_le_sub_iff] lemma div_le_div_iff' : a / b ≤ c / d ↔ a * d ≤ c * b := by simpa only [div_eq_mul_inv] using mul_inv_le_mul_inv_iff' @[to_additive] lemma le_div_iff_mul_le' : b ≤ c / a ↔ a * b ≤ c := by rw [le_div_iff_mul_le, mul_comm] alias le_sub_iff_add_le' ↔ add_le_of_le_sub_left le_sub_left_of_add_le @[to_additive] lemma div_le_iff_le_mul' : a / b ≤ c ↔ a ≤ b * c := by rw [div_le_iff_le_mul, mul_comm] alias sub_le_iff_le_add' ↔ le_add_of_sub_left_le sub_left_le_of_le_add @[simp, to_additive] lemma inv_le_div_iff_le_mul : b⁻¹ ≤ a / c ↔ c ≤ a * b := le_div_iff_mul_le.trans inv_mul_le_iff_le_mul' @[to_additive] lemma inv_le_div_iff_le_mul' : a⁻¹ ≤ b / c ↔ c ≤ a * b := by rw [inv_le_div_iff_le_mul, mul_comm] @[to_additive sub_le] lemma div_le'' : a / b ≤ c ↔ a / c ≤ b := div_le_iff_le_mul'.trans div_le_iff_le_mul.symm @[to_additive le_sub] lemma le_div'' : a ≤ b / c ↔ c ≤ b / a := le_div_iff_mul_le'.trans le_div_iff_mul_le.symm end has_le section preorder variables [preorder α] [covariant_class α α (*) (≤)] {a b c d : α} @[to_additive sub_le_sub] lemma div_le_div'' (hab : a ≤ b) (hcd : c ≤ d) : a / d ≤ b / c := begin rw [div_eq_mul_inv, div_eq_mul_inv, mul_comm b, mul_inv_le_inv_mul_iff, mul_comm], exact mul_le_mul' hab hcd end end preorder end comm_group /- Most of the lemmas that are primed in this section appear in ordered_field. -/ /- I (DT) did not try to minimise the assumptions. -/ section group variables [group α] [has_lt α] section right variables [covariant_class α α (swap (*)) (<)] {a b c d : α} @[simp, to_additive] lemma div_lt_div_iff_right (c : α) : a / c < b / c ↔ a < b := by simpa only [div_eq_mul_inv] using mul_lt_mul_iff_right _ @[to_additive sub_lt_sub_right] lemma div_lt_div_right' (h : a < b) (c : α) : a / c < b / c := (div_lt_div_iff_right c).2 h @[simp, to_additive sub_pos] lemma one_lt_div' : 1 < a / b ↔ b < a := by rw [← mul_lt_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right] alias sub_pos ↔ lt_of_sub_pos sub_pos_of_lt @[simp, to_additive sub_neg] lemma div_lt_one' : a / b < 1 ↔ a < b := by rw [← mul_lt_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right] alias sub_neg ↔ lt_of_sub_neg sub_neg_of_lt alias sub_neg ← sub_lt_zero @[to_additive] lemma lt_div_iff_mul_lt : a < c / b ↔ a * b < c := by rw [← mul_lt_mul_iff_right b, div_eq_mul_inv, inv_mul_cancel_right] alias lt_sub_iff_add_lt ↔ add_lt_of_lt_sub_right lt_sub_right_of_add_lt @[to_additive] lemma div_lt_iff_lt_mul : a / c < b ↔ a < b * c := by rw [← mul_lt_mul_iff_right c, div_eq_mul_inv, inv_mul_cancel_right] alias sub_lt_iff_lt_add ↔ lt_add_of_sub_right_lt sub_right_lt_of_lt_add end right section left variables [covariant_class α α (*) (<)] [covariant_class α α (swap (*)) (<)] {a b c : α} @[simp, to_additive] lemma div_lt_div_iff_left (a : α) : a / b < a / c ↔ c < b := by rw [div_eq_mul_inv, div_eq_mul_inv, ← mul_lt_mul_iff_left a⁻¹, inv_mul_cancel_left, inv_mul_cancel_left, inv_lt_inv_iff] @[simp, to_additive] lemma inv_lt_div_iff_lt_mul : a⁻¹ < b / c ↔ c < a * b := by rw [div_eq_mul_inv, lt_mul_inv_iff_mul_lt, inv_mul_lt_iff_lt_mul] @[to_additive sub_lt_sub_left] lemma div_lt_div_left' (h : a < b) (c : α) : c / b < c / a := (div_lt_div_iff_left c).2 h end left end group section comm_group variables [comm_group α] section has_lt variables [has_lt α] [covariant_class α α (*) (<)] {a b c d : α} @[to_additive sub_lt_sub_iff] lemma div_lt_div_iff' : a / b < c / d ↔ a * d < c * b := by simpa only [div_eq_mul_inv] using mul_inv_lt_mul_inv_iff' @[to_additive] lemma lt_div_iff_mul_lt' : b < c / a ↔ a * b < c := by rw [lt_div_iff_mul_lt, mul_comm] alias lt_sub_iff_add_lt' ↔ add_lt_of_lt_sub_left lt_sub_left_of_add_lt @[to_additive] lemma div_lt_iff_lt_mul' : a / b < c ↔ a < b * c := by rw [div_lt_iff_lt_mul, mul_comm] alias sub_lt_iff_lt_add' ↔ lt_add_of_sub_left_lt sub_left_lt_of_lt_add @[to_additive] lemma inv_lt_div_iff_lt_mul' : b⁻¹ < a / c ↔ c < a * b := lt_div_iff_mul_lt.trans inv_mul_lt_iff_lt_mul' @[to_additive sub_lt] lemma div_lt'' : a / b < c ↔ a / c < b := div_lt_iff_lt_mul'.trans div_lt_iff_lt_mul.symm @[to_additive lt_sub] lemma lt_div'' : a < b / c ↔ c < b / a := lt_div_iff_mul_lt'.trans lt_div_iff_mul_lt.symm end has_lt section preorder variables [preorder α] [covariant_class α α (*) (<)] {a b c d : α} @[to_additive sub_lt_sub] lemma div_lt_div'' (hab : a < b) (hcd : c < d) : a / d < b / c := begin rw [div_eq_mul_inv, div_eq_mul_inv, mul_comm b, mul_inv_lt_inv_mul_iff, mul_comm], exact mul_lt_mul_of_lt_of_lt hab hcd end end preorder end comm_group section linear_order variables [group α] [linear_order α] [covariant_class α α (*) (≤)] section variable_names variables {a b c : α} @[to_additive] lemma le_of_forall_one_lt_lt_mul (h : ∀ ε : α, 1 < ε → a < b * ε) : a ≤ b := le_of_not_lt (λ h₁, lt_irrefl a (by simpa using (h _ (lt_inv_mul_iff_lt.mpr h₁)))) @[to_additive] lemma le_iff_forall_one_lt_lt_mul : a ≤ b ↔ ∀ ε, 1 < ε → a < b * ε := ⟨λ h ε, lt_mul_of_le_of_one_lt h, le_of_forall_one_lt_lt_mul⟩ /- I (DT) introduced this lemma to prove (the additive version `sub_le_sub_flip` of) `div_le_div_flip` below. Now I wonder what is the point of either of these lemmas... -/ @[to_additive] lemma div_le_inv_mul_iff [covariant_class α α (swap (*)) (≤)] : a / b ≤ a⁻¹ * b ↔ a ≤ b := begin rw [div_eq_mul_inv, mul_inv_le_inv_mul_iff], exact ⟨λ h, not_lt.mp (λ k, not_lt.mpr h (mul_lt_mul_of_lt_of_lt k k)), λ h, mul_le_mul' h h⟩, end /- What is the point of this lemma? See comment about `div_le_inv_mul_iff` above. -/ @[simp, to_additive] lemma div_le_div_flip {α : Type*} [comm_group α] [linear_order α] [covariant_class α α (*) (≤)] {a b : α}: a / b ≤ b / a ↔ a ≤ b := begin rw [div_eq_mul_inv b, mul_comm], exact div_le_inv_mul_iff, end @[simp, to_additive] lemma max_one_div_max_inv_one_eq_self (a : α) : max a 1 / max a⁻¹ 1 = a := by { rcases le_total a 1 with h|h; simp [h] } alias max_zero_sub_max_neg_zero_eq_self ← max_zero_sub_eq_self end variable_names section densely_ordered variables [densely_ordered α] {a b c : α} @[to_additive] lemma le_of_forall_one_lt_le_mul (h : ∀ ε : α, 1 < ε → a ≤ b * ε) : a ≤ b := le_of_forall_le_of_dense $ λ c hc, calc a ≤ b * (b⁻¹ * c) : h _ (lt_inv_mul_iff_lt.mpr hc) ... = c : mul_inv_cancel_left b c @[to_additive] lemma le_of_forall_lt_one_mul_le (h : ∀ ε < 1, a * ε ≤ b) : a ≤ b := @le_of_forall_one_lt_le_mul αᵒᵈ _ _ _ _ _ _ h @[to_additive] lemma le_of_forall_one_lt_div_le (h : ∀ ε : α, 1 < ε → a / ε ≤ b) : a ≤ b := le_of_forall_lt_one_mul_le $ λ ε ε1, by simpa only [div_eq_mul_inv, inv_inv] using h ε⁻¹ (left.one_lt_inv_iff.2 ε1) @[to_additive] lemma le_iff_forall_one_lt_le_mul : a ≤ b ↔ ∀ ε, 1 < ε → a ≤ b * ε := ⟨λ h ε ε_pos, le_mul_of_le_of_one_le h ε_pos.le, le_of_forall_one_lt_le_mul⟩ @[to_additive] lemma le_iff_forall_lt_one_mul_le : a ≤ b ↔ ∀ ε < 1, a * ε ≤ b := @le_iff_forall_one_lt_le_mul αᵒᵈ _ _ _ _ _ _ end densely_ordered end linear_order /-! ### Linearly ordered commutative groups -/ /-- A linearly ordered additive commutative group is an additive commutative group with a linear order in which addition is monotone. -/ @[protect_proj, ancestor ordered_add_comm_group linear_order] class linear_ordered_add_comm_group (α : Type u) extends ordered_add_comm_group α, linear_order α /-- A linearly ordered commutative monoid with an additively absorbing `⊤` element. Instances should include number systems with an infinite element adjoined.` -/ @[protect_proj, ancestor linear_ordered_add_comm_monoid_with_top sub_neg_monoid nontrivial] class linear_ordered_add_comm_group_with_top (α : Type*) extends linear_ordered_add_comm_monoid_with_top α, sub_neg_monoid α, nontrivial α := (neg_top : - (⊤ : α) = ⊤) (add_neg_cancel : ∀ a:α, a ≠ ⊤ → a + (- a) = 0) /-- A linearly ordered commutative group is a commutative group with a linear order in which multiplication is monotone. -/ @[protect_proj, ancestor ordered_comm_group linear_order, to_additive] class linear_ordered_comm_group (α : Type u) extends ordered_comm_group α, linear_order α @[to_additive] instance [linear_ordered_comm_group α] : linear_ordered_comm_group αᵒᵈ := { .. order_dual.ordered_comm_group, .. order_dual.linear_order α } section linear_ordered_comm_group variables [linear_ordered_comm_group α] {a b c : α} @[priority 100, to_additive] -- see Note [lower instance priority] instance linear_ordered_comm_group.to_linear_ordered_cancel_comm_monoid : linear_ordered_cancel_comm_monoid α := { le_of_mul_le_mul_left := λ x y z, le_of_mul_le_mul_left', mul_left_cancel := λ x y z, mul_left_cancel, ..‹linear_ordered_comm_group α› } /-- Pullback a `linear_ordered_comm_group` under an injective map. See note [reducible non-instances]. -/ @[reducible, to_additive function.injective.linear_ordered_add_comm_group "Pullback a `linear_ordered_add_comm_group` under an injective map."] def function.injective.linear_ordered_comm_group {β : Type*} [has_one β] [has_mul β] [has_inv β] [has_div β] [has_pow β ℕ] [has_pow β ℤ] [has_sup β] [has_inf β] (f : β → α) (hf : function.injective f) (one : f 1 = 1) (mul : ∀ x y, f (x * y) = f x * f y) (inv : ∀ x, f (x⁻¹) = (f x)⁻¹) (div : ∀ x y, f (x / y) = f x / f y) (npow : ∀ x (n : ℕ), f (x ^ n) = f x ^ n) (zpow : ∀ x (n : ℤ), f (x ^ n) = f x ^ n) (hsup : ∀ x y, f (x ⊔ y) = max (f x) (f y)) (hinf : ∀ x y, f (x ⊓ y) = min (f x) (f y)) : linear_ordered_comm_group β := { ..linear_order.lift f hf hsup hinf, ..hf.ordered_comm_group f one mul inv div npow zpow } @[to_additive linear_ordered_add_comm_group.add_lt_add_left] lemma linear_ordered_comm_group.mul_lt_mul_left' (a b : α) (h : a < b) (c : α) : c * a < c * b := mul_lt_mul_left' h c @[to_additive min_neg_neg] lemma min_inv_inv' (a b : α) : min (a⁻¹) (b⁻¹) = (max a b)⁻¹ := eq.symm $ @monotone.map_max α αᵒᵈ _ _ has_inv.inv a b $ λ a b, inv_le_inv_iff.mpr @[to_additive max_neg_neg] lemma max_inv_inv' (a b : α) : max (a⁻¹) (b⁻¹) = (min a b)⁻¹ := eq.symm $ @monotone.map_min α αᵒᵈ _ _ has_inv.inv a b $ λ a b, inv_le_inv_iff.mpr @[to_additive min_sub_sub_right] lemma min_div_div_right' (a b c : α) : min (a / c) (b / c) = min a b / c := by simpa only [div_eq_mul_inv] using min_mul_mul_right a b (c⁻¹) @[to_additive max_sub_sub_right] lemma max_div_div_right' (a b c : α) : max (a / c) (b / c) = max a b / c := by simpa only [div_eq_mul_inv] using max_mul_mul_right a b (c⁻¹) @[to_additive min_sub_sub_left] lemma min_div_div_left' (a b c : α) : min (a / b) (a / c) = a / max b c := by simp only [div_eq_mul_inv, min_mul_mul_left, min_inv_inv'] @[to_additive max_sub_sub_left] lemma max_div_div_left' (a b c : α) : max (a / b) (a / c) = a / min b c := by simp only [div_eq_mul_inv, max_mul_mul_left, max_inv_inv'] @[to_additive eq_zero_of_neg_eq] lemma eq_one_of_inv_eq' (h : a⁻¹ = a) : a = 1 := match lt_trichotomy a 1 with | or.inl h₁ := have 1 < a, from h ▸ one_lt_inv_of_inv h₁, absurd h₁ this.asymm | or.inr (or.inl h₁) := h₁ | or.inr (or.inr h₁) := have a < 1, from h ▸ inv_lt_one'.mpr h₁, absurd h₁ this.asymm end @[to_additive exists_zero_lt] lemma exists_one_lt' [nontrivial α] : ∃ (a:α), 1 < a := begin obtain ⟨y, hy⟩ := decidable.exists_ne (1 : α), cases hy.lt_or_lt, { exact ⟨y⁻¹, one_lt_inv'.mpr h⟩ }, { exact ⟨y, h⟩ } end @[priority 100, to_additive] -- see Note [lower instance priority] instance linear_ordered_comm_group.to_no_max_order [nontrivial α] : no_max_order α := ⟨ begin obtain ⟨y, hy⟩ : ∃ (a:α), 1 < a := exists_one_lt', exact λ a, ⟨a * y, lt_mul_of_one_lt_right' a hy⟩ end ⟩ @[priority 100, to_additive] -- see Note [lower instance priority] instance linear_ordered_comm_group.to_no_min_order [nontrivial α] : no_min_order α := ⟨ begin obtain ⟨y, hy⟩ : ∃ (a:α), 1 < a := exists_one_lt', exact λ a, ⟨a / y, (div_lt_self_iff a).mpr hy⟩ end ⟩ end linear_ordered_comm_group section covariant_add_le section has_neg /-- `abs a` is the absolute value of `a`. -/ @[to_additive "`abs a` is the absolute value of `a`", priority 100] -- see Note [lower instance priority] instance has_inv.to_has_abs [has_inv α] [has_sup α] : has_abs α := ⟨λ a, a ⊔ a⁻¹⟩ @[to_additive] lemma abs_eq_sup_inv [has_inv α] [has_sup α] (a : α) : |a| = a ⊔ a⁻¹ := rfl variables [has_neg α] [linear_order α] {a b: α} lemma abs_eq_max_neg : abs a = max a (-a) := rfl lemma abs_choice (x : α) : |x| = x ∨ |x| = -x := max_choice _ _ lemma abs_le' : |a| ≤ b ↔ a ≤ b ∧ -a ≤ b := max_le_iff lemma le_abs : a ≤ |b| ↔ a ≤ b ∨ a ≤ -b := le_max_iff lemma le_abs_self (a : α) : a ≤ |a| := le_max_left _ _ lemma neg_le_abs_self (a : α) : -a ≤ |a| := le_max_right _ _ lemma lt_abs : a < |b| ↔ a < b ∨ a < -b := lt_max_iff theorem abs_le_abs (h₀ : a ≤ b) (h₁ : -a ≤ b) : |a| ≤ |b| := (abs_le'.2 ⟨h₀, h₁⟩).trans (le_abs_self b) lemma abs_by_cases (P : α → Prop) {a : α} (h1 : P a) (h2 : P (-a)) : P (|a|) := sup_ind _ _ h1 h2 end has_neg section add_group variables [add_group α] [linear_order α] @[simp] lemma abs_neg (a : α) : | -a| = |a| := begin rw [abs_eq_max_neg, max_comm, neg_neg, abs_eq_max_neg] end lemma eq_or_eq_neg_of_abs_eq {a b : α} (h : |a| = b) : a = b ∨ a = -b := by simpa only [← h, eq_comm, eq_neg_iff_eq_neg] using abs_choice a lemma abs_eq_abs {a b : α} : |a| = |b| ↔ a = b ∨ a = -b := begin refine ⟨λ h, _, λ h, _⟩, { obtain rfl | rfl := eq_or_eq_neg_of_abs_eq h; simpa only [neg_eq_iff_neg_eq, neg_inj, or.comm, @eq_comm _ (-b)] using abs_choice b }, { cases h; simp only [h, abs_neg] }, end lemma abs_sub_comm (a b : α) : |a - b| = |b - a| := calc |a - b| = | - (b - a)| : congr_arg _ (neg_sub b a).symm ... = |b - a| : abs_neg (b - a) variables [covariant_class α α (+) (≤)] {a b c : α} lemma abs_of_nonneg (h : 0 ≤ a) : |a| = a := max_eq_left $ (neg_nonpos.2 h).trans h lemma abs_of_pos (h : 0 < a) : |a| = a := abs_of_nonneg h.le lemma abs_of_nonpos (h : a ≤ 0) : |a| = -a := max_eq_right $ h.trans (neg_nonneg.2 h) lemma abs_of_neg (h : a < 0) : |a| = -a := abs_of_nonpos h.le @[simp] lemma abs_zero : |0| = (0:α) := abs_of_nonneg le_rfl @[simp] lemma abs_pos : 0 < |a| ↔ a ≠ 0 := begin rcases lt_trichotomy a 0 with (ha|rfl|ha), { simp [abs_of_neg ha, neg_pos, ha.ne, ha] }, { simp }, { simp [abs_of_pos ha, ha, ha.ne.symm] } end lemma abs_pos_of_pos (h : 0 < a) : 0 < |a| := abs_pos.2 h.ne.symm lemma abs_pos_of_neg (h : a < 0) : 0 < |a| := abs_pos.2 h.ne lemma neg_abs_le_self (a : α) : -|a| ≤ a := begin cases le_total 0 a with h h, { calc -|a| = - a : congr_arg (has_neg.neg) (abs_of_nonneg h) ... ≤ 0 : neg_nonpos.mpr h ... ≤ a : h }, { calc -|a| = - - a : congr_arg (has_neg.neg) (abs_of_nonpos h) ... ≤ a : (neg_neg a).le } end lemma add_abs_nonneg (a : α) : 0 ≤ a + |a| := begin rw ←add_right_neg a, apply add_le_add_left, exact (neg_le_abs_self a), end lemma neg_abs_le_neg (a : α) : -|a| ≤ -a := by simpa using neg_abs_le_self (-a) @[simp] lemma abs_nonneg (a : α) : 0 ≤ |a| := (le_total 0 a).elim (λ h, h.trans (le_abs_self a)) (λ h, (neg_nonneg.2 h).trans $ neg_le_abs_self a) @[simp] lemma abs_abs (a : α) : | |a| | = |a| := abs_of_nonneg $ abs_nonneg a @[simp] lemma abs_eq_zero : |a| = 0 ↔ a = 0 := decidable.not_iff_not.1 $ ne_comm.trans $ (abs_nonneg a).lt_iff_ne.symm.trans abs_pos @[simp] lemma abs_nonpos_iff {a : α} : |a| ≤ 0 ↔ a = 0 := (abs_nonneg a).le_iff_eq.trans abs_eq_zero variable [covariant_class α α (swap (+)) (≤)] lemma abs_lt : |a| < b ↔ - b < a ∧ a < b := max_lt_iff.trans $ and.comm.trans $ by rw [neg_lt] lemma neg_lt_of_abs_lt (h : |a| < b) : -b < a := (abs_lt.mp h).1 lemma lt_of_abs_lt (h : |a| < b) : a < b := (abs_lt.mp h).2 lemma max_sub_min_eq_abs' (a b : α) : max a b - min a b = |a - b| := begin cases le_total a b with ab ba, { rw [max_eq_right ab, min_eq_left ab, abs_of_nonpos, neg_sub], rwa sub_nonpos }, { rw [max_eq_left ba, min_eq_right ba, abs_of_nonneg], rwa sub_nonneg } end lemma max_sub_min_eq_abs (a b : α) : max a b - min a b = |b - a| := by { rw abs_sub_comm, exact max_sub_min_eq_abs' _ _ } end add_group end covariant_add_le section linear_ordered_add_comm_group variables [linear_ordered_add_comm_group α] {a b c d : α} lemma abs_le : |a| ≤ b ↔ - b ≤ a ∧ a ≤ b := by rw [abs_le', and.comm, neg_le] lemma le_abs' : a ≤ |b| ↔ b ≤ -a ∨ a ≤ b := by rw [le_abs, or.comm, le_neg] lemma neg_le_of_abs_le (h : |a| ≤ b) : -b ≤ a := (abs_le.mp h).1 lemma le_of_abs_le (h : |a| ≤ b) : a ≤ b := (abs_le.mp h).2 @[to_additive] lemma apply_abs_le_mul_of_one_le' {β : Type*} [mul_one_class β] [preorder β] [covariant_class β β (*) (≤)] [covariant_class β β (swap (*)) (≤)] {f : α → β} {a : α} (h₁ : 1 ≤ f a) (h₂ : 1 ≤ f (-a)) : f (|a|) ≤ f a * f (-a) := (le_total a 0).by_cases (λ ha, (abs_of_nonpos ha).symm ▸ le_mul_of_one_le_left' h₁) (λ ha, (abs_of_nonneg ha).symm ▸ le_mul_of_one_le_right' h₂) @[to_additive] lemma apply_abs_le_mul_of_one_le {β : Type*} [mul_one_class β] [preorder β] [covariant_class β β (*) (≤)] [covariant_class β β (swap (*)) (≤)] {f : α → β} (h : ∀ x, 1 ≤ f x) (a : α) : f (|a|) ≤ f a * f (-a) := apply_abs_le_mul_of_one_le' (h _) (h _) /-- The **triangle inequality** in `linear_ordered_add_comm_group`s. -/ lemma abs_add (a b : α) : |a + b| ≤ |a| + |b| := abs_le.2 ⟨(neg_add (|a|) (|b|)).symm ▸ add_le_add (neg_le.2 $ neg_le_abs_self _) (neg_le.2 $ neg_le_abs_self _), add_le_add (le_abs_self _) (le_abs_self _)⟩ lemma abs_add' (a b : α) : |a| ≤ |b| + |b + a| := by simpa using abs_add (-b) (b + a) theorem abs_sub (a b : α) : |a - b| ≤ |a| + |b| := by { rw [sub_eq_add_neg, ←abs_neg b], exact abs_add a _ } lemma abs_sub_le_iff : |a - b| ≤ c ↔ a - b ≤ c ∧ b - a ≤ c := by rw [abs_le, neg_le_sub_iff_le_add, sub_le_iff_le_add', and_comm, sub_le_iff_le_add'] lemma abs_sub_lt_iff : |a - b| < c ↔ a - b < c ∧ b - a < c := by rw [abs_lt, neg_lt_sub_iff_lt_add', sub_lt_iff_lt_add', and_comm, sub_lt_iff_lt_add'] lemma sub_le_of_abs_sub_le_left (h : |a - b| ≤ c) : b - c ≤ a := sub_le.1 $ (abs_sub_le_iff.1 h).2 lemma sub_le_of_abs_sub_le_right (h : |a - b| ≤ c) : a - c ≤ b := sub_le_of_abs_sub_le_left (abs_sub_comm a b ▸ h) lemma sub_lt_of_abs_sub_lt_left (h : |a - b| < c) : b - c < a := sub_lt.1 $ (abs_sub_lt_iff.1 h).2 lemma sub_lt_of_abs_sub_lt_right (h : |a - b| < c) : a - c < b := sub_lt_of_abs_sub_lt_left (abs_sub_comm a b ▸ h) lemma abs_sub_abs_le_abs_sub (a b : α) : |a| - |b| ≤ |a - b| := sub_le_iff_le_add.2 $ calc |a| = |a - b + b| : by rw [sub_add_cancel] ... ≤ |a - b| + |b| : abs_add _ _ lemma abs_abs_sub_abs_le_abs_sub (a b : α) : | |a| - |b| | ≤ |a - b| := abs_sub_le_iff.2 ⟨abs_sub_abs_le_abs_sub _ _, by rw abs_sub_comm; apply abs_sub_abs_le_abs_sub⟩ lemma abs_eq (hb : 0 ≤ b) : |a| = b ↔ a = b ∨ a = -b := begin refine ⟨eq_or_eq_neg_of_abs_eq, _⟩, rintro (rfl|rfl); simp only [abs_neg, abs_of_nonneg hb] end lemma abs_le_max_abs_abs (hab : a ≤ b) (hbc : b ≤ c) : |b| ≤ max (|a|) (|c|) := abs_le'.2 ⟨by simp [hbc.trans (le_abs_self c)], by simp [(neg_le_neg_iff.mpr hab).trans (neg_le_abs_self a)]⟩ lemma eq_of_abs_sub_eq_zero {a b : α} (h : |a - b| = 0) : a = b := sub_eq_zero.1 $ abs_eq_zero.1 h lemma abs_sub_le (a b c : α) : |a - c| ≤ |a - b| + |b - c| := calc |a - c| = |a - b + (b - c)| : by rw [sub_add_sub_cancel] ... ≤ |a - b| + |b - c| : abs_add _ _ lemma abs_add_three (a b c : α) : |a + b + c| ≤ |a| + |b| + |c| := (abs_add _ _).trans (add_le_add_right (abs_add _ _) _) lemma dist_bdd_within_interval {a b lb ub : α} (hal : lb ≤ a) (hau : a ≤ ub) (hbl : lb ≤ b) (hbu : b ≤ ub) : |a - b| ≤ ub - lb := abs_sub_le_iff.2 ⟨sub_le_sub hau hbl, sub_le_sub hbu hal⟩ lemma eq_of_abs_sub_nonpos (h : |a - b| ≤ 0) : a = b := eq_of_abs_sub_eq_zero (le_antisymm h (abs_nonneg (a - b))) lemma max_sub_max_le_max (a b c d : α) : max a b - max c d ≤ max (a - c) (b - d) := begin simp only [sub_le_iff_le_add, max_le_iff], split, calc a = a - c + c : (sub_add_cancel a c).symm ... ≤ max (a - c) (b - d) + max c d : add_le_add (le_max_left _ _) (le_max_left _ _), calc b = b - d + d : (sub_add_cancel b d).symm ... ≤ max (a - c) (b - d) + max c d : add_le_add (le_max_right _ _) (le_max_right _ _) end lemma abs_max_sub_max_le_max (a b c d : α) : |max a b - max c d| ≤ max (|a - c|) (|b - d|) := begin refine abs_sub_le_iff.2 ⟨_, _⟩, { exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _)) }, { rw [abs_sub_comm a c, abs_sub_comm b d], exact (max_sub_max_le_max _ _ _ _).trans (max_le_max (le_abs_self _) (le_abs_self _)) } end lemma abs_min_sub_min_le_max (a b c d : α) : |min a b - min c d| ≤ max (|a - c|) (|b - d|) := by simpa only [max_neg_neg, neg_sub_neg, abs_sub_comm] using abs_max_sub_max_le_max (-a) (-b) (-c) (-d) lemma abs_max_sub_max_le_abs (a b c : α) : |max a c - max b c| ≤ |a - b| := by simpa only [sub_self, abs_zero, max_eq_left (abs_nonneg _)] using abs_max_sub_max_le_max a c b c instance with_top.linear_ordered_add_comm_group_with_top : linear_ordered_add_comm_group_with_top (with_top α) := { neg := option.map (λ a : α, -a), neg_top := @option.map_none _ _ (λ a : α, -a), add_neg_cancel := begin rintro (a | a) ha, { exact (ha rfl).elim }, { exact with_top.coe_add.symm.trans (with_top.coe_eq_coe.2 (add_neg_self a)) } end, .. with_top.linear_ordered_add_comm_monoid_with_top, .. option.nontrivial } @[simp, norm_cast] lemma with_top.coe_neg (a : α) : ((-a : α) : with_top α) = -a := rfl end linear_ordered_add_comm_group namespace add_comm_group /-- A collection of elements in an `add_comm_group` designated as "non-negative". This is useful for constructing an `ordered_add_commm_group` by choosing a positive cone in an exisiting `add_comm_group`. -/ @[nolint has_inhabited_instance] structure positive_cone (α : Type*) [add_comm_group α] := (nonneg : α → Prop) (pos : α → Prop := λ a, nonneg a ∧ ¬ nonneg (-a)) (pos_iff : ∀ a, pos a ↔ nonneg a ∧ ¬ nonneg (-a) . order_laws_tac) (zero_nonneg : nonneg 0) (add_nonneg : ∀ {a b}, nonneg a → nonneg b → nonneg (a + b)) (nonneg_antisymm : ∀ {a}, nonneg a → nonneg (-a) → a = 0) /-- A positive cone in an `add_comm_group` induces a linear order if for every `a`, either `a` or `-a` is non-negative. -/ @[nolint has_inhabited_instance] structure total_positive_cone (α : Type*) [add_comm_group α] extends positive_cone α := (nonneg_decidable : decidable_pred nonneg) (nonneg_total : ∀ a : α, nonneg a ∨ nonneg (-a)) /-- Forget that a `total_positive_cone` is total. -/ add_decl_doc total_positive_cone.to_positive_cone end add_comm_group namespace ordered_add_comm_group open add_comm_group /-- Construct an `ordered_add_comm_group` by designating a positive cone in an existing `add_comm_group`. -/ def mk_of_positive_cone {α : Type*} [add_comm_group α] (C : positive_cone α) : ordered_add_comm_group α := { le := λ a b, C.nonneg (b - a), lt := λ a b, C.pos (b - a), lt_iff_le_not_le := λ a b, by simp; rw [C.pos_iff]; simp, le_refl := λ a, by simp [C.zero_nonneg], le_trans := λ a b c nab nbc, by simp [-sub_eq_add_neg]; rw ← sub_add_sub_cancel; exact C.add_nonneg nbc nab, le_antisymm := λ a b nab nba, eq_of_sub_eq_zero $ C.nonneg_antisymm nba (by rw neg_sub; exact nab), add_le_add_left := λ a b nab c, by simpa [(≤), preorder.le] using nab, ..‹add_comm_group α› } end ordered_add_comm_group namespace linear_ordered_add_comm_group open add_comm_group /-- Construct a `linear_ordered_add_comm_group` by designating a positive cone in an existing `add_comm_group` such that for every `a`, either `a` or `-a` is non-negative. -/ def mk_of_positive_cone {α : Type*} [add_comm_group α] (C : total_positive_cone α) : linear_ordered_add_comm_group α := { le_total := λ a b, by { convert C.nonneg_total (b - a), change C.nonneg _ = _, congr, simp, }, decidable_le := λ a b, C.nonneg_decidable _, ..ordered_add_comm_group.mk_of_positive_cone C.to_positive_cone } end linear_ordered_add_comm_group namespace prod variables {G H : Type*} @[to_additive] instance [ordered_comm_group G] [ordered_comm_group H] : ordered_comm_group (G × H) := { .. prod.comm_group, .. prod.partial_order G H, .. prod.ordered_cancel_comm_monoid } end prod section type_tags instance [ordered_add_comm_group α] : ordered_comm_group (multiplicative α) := { ..multiplicative.comm_group, ..multiplicative.ordered_comm_monoid } instance [ordered_comm_group α] : ordered_add_comm_group (additive α) := { ..additive.add_comm_group, ..additive.ordered_add_comm_monoid } instance [linear_ordered_add_comm_group α] : linear_ordered_comm_group (multiplicative α) := { ..multiplicative.linear_order, ..multiplicative.ordered_comm_group } instance [linear_ordered_comm_group α] : linear_ordered_add_comm_group (additive α) := { ..additive.linear_order, ..additive.ordered_add_comm_group } end type_tags section norm_num_lemmas /- The following lemmas are stated so that the `norm_num` tactic can use them with the expected signatures. -/ variables [ordered_comm_group α] {a b : α} @[to_additive neg_le_neg] lemma inv_le_inv' : a ≤ b → b⁻¹ ≤ a⁻¹ := inv_le_inv_iff.mpr @[to_additive neg_lt_neg] lemma inv_lt_inv' : a < b → b⁻¹ < a⁻¹ := inv_lt_inv_iff.mpr /- The additive version is also a `linarith` lemma. -/ @[to_additive] theorem inv_lt_one_of_one_lt : 1 < a → a⁻¹ < 1 := inv_lt_one_iff_one_lt.mpr /- The additive version is also a `linarith` lemma. -/ @[to_additive] lemma inv_le_one_of_one_le : 1 ≤ a → a⁻¹ ≤ 1 := inv_le_one'.mpr @[to_additive neg_nonneg_of_nonpos] lemma one_le_inv_of_le_one : a ≤ 1 → 1 ≤ a⁻¹ := one_le_inv'.mpr end norm_num_lemmas section variables {β : Type*} [group α] [preorder α] [covariant_class α α (*) (≤)] [covariant_class α α (swap (*)) (≤)] [preorder β] {f : β → α} {s : set β} @[to_additive] lemma monotone.inv (hf : monotone f) : antitone (λ x, (f x)⁻¹) := λ x y hxy, inv_le_inv_iff.2 (hf hxy) @[to_additive] lemma antitone.inv (hf : antitone f) : monotone (λ x, (f x)⁻¹) := λ x y hxy, inv_le_inv_iff.2 (hf hxy) @[to_additive] lemma monotone_on.inv (hf : monotone_on f s) : antitone_on (λ x, (f x)⁻¹) s := λ x hx y hy hxy, inv_le_inv_iff.2 (hf hx hy hxy) @[to_additive] lemma antitone_on.inv (hf : antitone_on f s) : monotone_on (λ x, (f x)⁻¹) s := λ x hx y hy hxy, inv_le_inv_iff.2 (hf hx hy hxy) end section variables {β : Type*} [group α] [preorder α] [covariant_class α α (*) (<)] [covariant_class α α (swap (*)) (<)] [preorder β] {f : β → α} {s : set β} @[to_additive] lemma strict_mono.inv (hf : strict_mono f) : strict_anti (λ x, (f x)⁻¹) := λ x y hxy, inv_lt_inv_iff.2 (hf hxy) @[to_additive] lemma strict_anti.inv (hf : strict_anti f) : strict_mono (λ x, (f x)⁻¹) := λ x y hxy, inv_lt_inv_iff.2 (hf hxy) @[to_additive] lemma strict_mono_on.inv (hf : strict_mono_on f s) : strict_anti_on (λ x, (f x)⁻¹) s := λ x hx y hy hxy, inv_lt_inv_iff.2 (hf hx hy hxy) @[to_additive] lemma strict_anti_on.inv (hf : strict_anti_on f s) : strict_mono_on (λ x, (f x)⁻¹) s := λ x hx y hy hxy, inv_lt_inv_iff.2 (hf hx hy hxy) end