/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import logic.equiv.basic /-! # Functions functorial with respect to equivalences An `equiv_functor` is a function from `Type → Type` equipped with the additional data of coherently mapping equivalences to equivalences. In categorical language, it is an endofunctor of the "core" of the category `Type`. -/ universes u₀ u₁ u₂ v₀ v₁ v₂ open function /-- An `equiv_functor` is only functorial with respect to equivalences. To construct an `equiv_functor`, it suffices to supply just the function `f α → f β` from an equivalence `α ≃ β`, and then prove the functor laws. It's then a consequence that this function is part of an equivalence, provided by `equiv_functor.map_equiv`. -/ class equiv_functor (f : Type u₀ → Type u₁) := (map : Π {α β}, (α ≃ β) → (f α → f β)) (map_refl' : Π α, map (equiv.refl α) = @id (f α) . obviously) (map_trans' : Π {α β γ} (k : α ≃ β) (h : β ≃ γ), map (k.trans h) = (map h) ∘ (map k) . obviously) restate_axiom equiv_functor.map_refl' restate_axiom equiv_functor.map_trans' attribute [simp] equiv_functor.map_refl namespace equiv_functor section variables (f : Type u₀ → Type u₁) [equiv_functor f] {α β : Type u₀} (e : α ≃ β) /-- An `equiv_functor` in fact takes every equiv to an equiv. -/ def map_equiv : f α ≃ f β := { to_fun := equiv_functor.map e, inv_fun := equiv_functor.map e.symm, left_inv := λ x, by { convert (congr_fun (equiv_functor.map_trans e e.symm) x).symm, simp, }, right_inv := λ y, by { convert (congr_fun (equiv_functor.map_trans e.symm e) y).symm, simp, }, } @[simp] lemma map_equiv_apply (x : f α) : map_equiv f e x = equiv_functor.map e x := rfl lemma map_equiv_symm_apply (y : f β) : (map_equiv f e).symm y = equiv_functor.map e.symm y := rfl @[simp] lemma map_equiv_refl (α) : map_equiv f (equiv.refl α) = equiv.refl (f α) := by simpa [equiv_functor.map_equiv] @[simp] lemma map_equiv_symm : (map_equiv f e).symm = map_equiv f e.symm := equiv.ext $ map_equiv_symm_apply f e /-- The composition of `map_equiv`s is carried over the `equiv_functor`. For plain `functor`s, this lemma is named `map_map` when applied or `map_comp_map` when not applied. -/ @[simp] lemma map_equiv_trans {γ : Type u₀} (ab : α ≃ β) (bc : β ≃ γ) : (map_equiv f ab).trans (map_equiv f bc) = map_equiv f (ab.trans bc) := equiv.ext $ λ x, by simp [map_equiv, map_trans'] end @[priority 100] instance of_is_lawful_functor (f : Type u₀ → Type u₁) [functor f] [is_lawful_functor f] : equiv_functor f := { map := λ α β e, functor.map e, map_refl' := λ α, by { ext, apply is_lawful_functor.id_map, }, map_trans' := λ α β γ k h, by { ext x, apply (is_lawful_functor.comp_map k h x), } } lemma map_equiv.injective (f : Type u₀ → Type u₁) [applicative f] [is_lawful_applicative f] {α β : Type u₀} (h : ∀ γ, function.injective (pure : γ → f γ)) : function.injective (@equiv_functor.map_equiv f _ α β) := λ e₁ e₂ H, equiv.ext $ λ x, h β (by simpa [equiv_functor.map] using equiv.congr_fun H (pure x)) end equiv_functor