/- Copyright (c) 2018 Simon Hudon. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Simon Hudon, Sean Leather -/ import algebra.free_monoid import algebra.opposites import control.traversable.instances import control.traversable.lemmas import category_theory.endomorphism import category_theory.types import category_theory.category.Kleisli /-! # List folds generalized to `traversable` Informally, we can think of `foldl` as a special case of `traverse` where we do not care about the reconstructed data structure and, in a state monad, we care about the final state. The obvious way to define `foldl` would be to use the state monad but it is nicer to reason about a more abstract interface with `fold_map` as a primitive and `fold_map_hom` as a defining property. ``` def fold_map {α ω} [has_one ω] [has_mul ω] (f : α → ω) : t α → ω := ... lemma fold_map_hom (α β) [monoid α] [monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (fold_map g x) = fold_map (f ∘ g) x := ... ``` `fold_map` uses a monoid ω to accumulate a value for every element of a data structure and `fold_map_hom` uses a monoid homomorphism to substitute the monoid used by `fold_map`. The two are sufficient to define `foldl`, `foldr` and `to_list`. `to_list` permits the formulation of specifications in terms of operations on lists. Each fold function can be defined using a specialized monoid. `to_list` uses a free monoid represented as a list with concatenation while `foldl` uses endofunctions together with function composition. The definition through monoids uses `traverse` together with the applicative functor `const m` (where `m` is the monoid). As an implementation, `const` guarantees that no resource is spent on reconstructing the structure during traversal. A special class could be defined for `foldable`, similarly to Haskell, but the author cannot think of instances of `foldable` that are not also `traversable`. -/ universes u v open ulift category_theory mul_opposite namespace monoid variables {m : Type u → Type u} [monad m] variables {α β : Type u} /-- For a list, foldl f x [y₀,y₁] reduces as follows: ``` calc foldl f x [y₀,y₁] = foldl f (f x y₀) [y₁] : rfl ... = foldl f (f (f x y₀) y₁) [] : rfl ... = f (f x y₀) y₁ : rfl ``` with ``` f : α → β → α x : α [y₀,y₁] : list β ``` We can view the above as a composition of functions: ``` ... = f (f x y₀) y₁ : rfl ... = flip f y₁ (flip f y₀ x) : rfl ... = (flip f y₁ ∘ flip f y₀) x : rfl ``` We can use traverse and const to construct this composition: ``` calc const.run (traverse (λ y, const.mk' (flip f y)) [y₀,y₁]) x = const.run ((::) <$> const.mk' (flip f y₀) <*> traverse (λ y, const.mk' (flip f y)) [y₁]) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> traverse (λ y, const.mk' (flip f y)) [] )) x ... = const.run ((::) <$> const.mk' (flip f y₀) <*> ( (::) <$> const.mk' (flip f y₁) <*> pure [] )) x ... = const.run ( ((::) <$> const.mk' (flip f y₁) <*> pure []) ∘ ((::) <$> const.mk' (flip f y₀)) ) x ... = const.run ( const.mk' (flip f y₁) ∘ const.mk' (flip f y₀) ) x ... = const.run ( flip f y₁ ∘ flip f y₀ ) x ... = f (f x y₀) y₁ ``` And this is how `const` turns a monoid into an applicative functor and how the monoid of endofunctions define `foldl`. -/ @[reducible] def foldl (α : Type u) : Type u := (End α)ᵐᵒᵖ def foldl.mk (f : α → α) : foldl α := op f def foldl.get (x : foldl α) : α → α := unop x @[simps] def foldl.of_free_monoid (f : β → α → β) : free_monoid α →* monoid.foldl β := { to_fun := λ xs, op $ flip (list.foldl f) xs, map_one' := rfl, map_mul' := by intros; simp only [free_monoid.mul_def, flip, unop_op, list.foldl_append, op_inj]; refl } @[reducible] def foldr (α : Type u) : Type u := End α def foldr.mk (f : α → α) : foldr α := f def foldr.get (x : foldr α) : α → α := x @[simps] def foldr.of_free_monoid (f : α → β → β) : free_monoid α →* monoid.foldr β := { to_fun := λ xs, flip (list.foldr f) xs, map_one' := rfl, map_mul' := begin intros, simp only [free_monoid.mul_def, list.foldr_append, flip], refl end } @[reducible] def mfoldl (m : Type u → Type u) [monad m] (α : Type u) : Type u := mul_opposite $ End $ Kleisli.mk m α def mfoldl.mk (f : α → m α) : mfoldl m α := op f def mfoldl.get (x : mfoldl m α) : α → m α := unop x @[simps] def mfoldl.of_free_monoid [is_lawful_monad m] (f : β → α → m β) : free_monoid α →* monoid.mfoldl m β := { to_fun := λ xs, op $ flip (list.mfoldl f) xs, map_one' := rfl, map_mul' := by intros; apply unop_injective; ext; apply list.mfoldl_append } @[reducible] def mfoldr (m : Type u → Type u) [monad m] (α : Type u) : Type u := End $ Kleisli.mk m α def mfoldr.mk (f : α → m α) : mfoldr m α := f def mfoldr.get (x : mfoldr m α) : α → m α := x @[simps] def mfoldr.of_free_monoid [is_lawful_monad m] (f : α → β → m β) : free_monoid α →* monoid.mfoldr m β := { to_fun := λ xs, flip (list.mfoldr f) xs, map_one' := rfl, map_mul' := by intros; ext; apply list.mfoldr_append } end monoid namespace traversable open monoid functor section defs variables {α β : Type u} {t : Type u → Type u} [traversable t] def fold_map {α ω} [has_one ω] [has_mul ω] (f : α → ω) : t α → ω := traverse (const.mk' ∘ f) def foldl (f : α → β → α) (x : α) (xs : t β) : α := (fold_map (foldl.mk ∘ flip f) xs).get x def foldr (f : α → β → β) (x : β) (xs : t α) : β := (fold_map (foldr.mk ∘ f) xs).get x /-- Conceptually, `to_list` collects all the elements of a collection in a list. This idea is formalized by `lemma to_list_spec (x : t α) : to_list x = fold_map free_monoid.mk x`. The definition of `to_list` is based on `foldl` and `list.cons` for speed. It is faster than using `fold_map free_monoid.mk` because, by using `foldl` and `list.cons`, each insertion is done in constant time. As a consequence, `to_list` performs in linear. On the other hand, `fold_map free_monoid.mk` creates a singleton list around each element and concatenates all the resulting lists. In `xs ++ ys`, concatenation takes a time proportional to `length xs`. Since the order in which concatenation is evaluated is unspecified, nothing prevents each element of the traversable to be appended at the end `xs ++ [x]` which would yield a `O(n²)` run time. -/ def to_list : t α → list α := list.reverse ∘ foldl (flip list.cons) [] def length (xs : t α) : ℕ := down $ foldl (λ l _, up $ l.down + 1) (up 0) xs variables {m : Type u → Type u} [monad m] def mfoldl (f : α → β → m α) (x : α) (xs : t β) : m α := (fold_map (mfoldl.mk ∘ flip f) xs).get x def mfoldr (f : α → β → m β) (x : β) (xs : t α) : m β := (fold_map (mfoldr.mk ∘ f) xs).get x end defs section applicative_transformation variables {α β γ : Type u} open function (hiding const) def map_fold [monoid α] [monoid β] (f : α →* β) : applicative_transformation (const α) (const β) := { app := λ x, f, preserves_seq' := by { intros, simp only [f.map_mul, (<*>)], }, preserves_pure' := by { intros, simp only [f.map_one, pure] } } def free.mk : α → free_monoid α := list.ret def free.map (f : α → β) : free_monoid α →* free_monoid β := { to_fun := list.map f, map_mul' := λ x y, by simp only [free_monoid.mul_def, list.map_append, free_add_monoid.add_def], map_one' := by simp only [free_monoid.one_def, list.map, free_add_monoid.zero_def] } lemma free.map_eq_map (f : α → β) (xs : list α) : f <$> xs = free.map f xs := rfl lemma foldl.unop_of_free_monoid (f : β → α → β) (xs : free_monoid α) (a : β) : unop (foldl.of_free_monoid f xs) a = list.foldl f a xs := rfl variables (m : Type u → Type u) [monad m] [is_lawful_monad m] variables {t : Type u → Type u} [traversable t] [is_lawful_traversable t] open is_lawful_traversable lemma fold_map_hom [monoid α] [monoid β] (f : α →* β) (g : γ → α) (x : t γ) : f (fold_map g x) = fold_map (f ∘ g) x := calc f (fold_map g x) = f (traverse (const.mk' ∘ g) x) : rfl ... = (map_fold f).app _ (traverse (const.mk' ∘ g) x) : rfl ... = traverse ((map_fold f).app _ ∘ (const.mk' ∘ g)) x : naturality (map_fold f) _ _ ... = fold_map (f ∘ g) x : rfl lemma fold_map_hom_free [monoid β] (f : free_monoid α →* β) (x : t α) : f (fold_map free.mk x) = fold_map (f ∘ free.mk) x := fold_map_hom f _ x variable {m} lemma fold_mfoldl_cons (f : α → β → m α) (x : β) (y : α) : list.mfoldl f y (free.mk x) = f y x := by simp only [free.mk, list.ret, list.mfoldl, bind_pure] lemma fold_mfoldr_cons (f : β → α → m α) (x : β) (y : α) : list.mfoldr f y (free.mk x) = f x y := by simp only [free.mk, list.ret, list.mfoldr, pure_bind] end applicative_transformation section equalities open is_lawful_traversable list (cons) variables {α β γ : Type u} variables {t : Type u → Type u} [traversable t] [is_lawful_traversable t] @[simp] lemma foldl.of_free_monoid_comp_free_mk (f : α → β → α) : foldl.of_free_monoid f ∘ free.mk = foldl.mk ∘ flip f := rfl @[simp] lemma foldr.of_free_monoid_comp_free_mk (f : β → α → α) : foldr.of_free_monoid f ∘ free.mk = foldr.mk ∘ f := rfl @[simp] lemma mfoldl.of_free_monoid_comp_free_mk {m} [monad m] [is_lawful_monad m] (f : α → β → m α) : mfoldl.of_free_monoid f ∘ free.mk = mfoldl.mk ∘ flip f := by ext; simp [(∘), mfoldl.of_free_monoid, mfoldl.mk, flip, fold_mfoldl_cons]; refl @[simp] lemma mfoldr.of_free_monoid_comp_free_mk {m} [monad m] [is_lawful_monad m] (f : β → α → m α) : mfoldr.of_free_monoid f ∘ free.mk = mfoldr.mk ∘ f := by { ext, simp [(∘), mfoldr.of_free_monoid, mfoldr.mk, flip, fold_mfoldr_cons] } lemma to_list_spec (xs : t α) : to_list xs = (fold_map free.mk xs : free_monoid _) := eq.symm $ calc fold_map free.mk xs = (fold_map free.mk xs).reverse.reverse : by simp only [list.reverse_reverse] ... = (list.foldr cons [] (fold_map free.mk xs).reverse).reverse : by simp only [list.foldr_eta] ... = (unop (foldl.of_free_monoid (flip cons) (fold_map free.mk xs)) []).reverse : by simp [flip,list.foldr_reverse,foldl.of_free_monoid, unop_op] ... = to_list xs : begin rw fold_map_hom_free (foldl.of_free_monoid (flip $ @cons α)), simp only [to_list, foldl, list.reverse_inj, foldl.get, foldl.of_free_monoid_comp_free_mk], all_goals { apply_instance } end lemma fold_map_map [monoid γ] (f : α → β) (g : β → γ) (xs : t α) : fold_map g (f <$> xs) = fold_map (g ∘ f) xs := by simp only [fold_map,traverse_map] lemma foldl_to_list (f : α → β → α) (xs : t β) (x : α) : foldl f x xs = list.foldl f x (to_list xs) := begin rw ← foldl.unop_of_free_monoid, simp only [foldl, to_list_spec, fold_map_hom_free, foldl.of_free_monoid_comp_free_mk, foldl.get] end lemma foldr_to_list (f : α → β → β) (xs : t α) (x : β) : foldr f x xs = list.foldr f x (to_list xs) := begin change _ = foldr.of_free_monoid _ _ _, simp only [foldr, to_list_spec, fold_map_hom_free, foldr.of_free_monoid_comp_free_mk, foldr.get] end lemma to_list_map (f : α → β) (xs : t α) : to_list (f <$> xs) = f <$> to_list xs := by { simp only [to_list_spec,free.map_eq_map,fold_map_hom (free.map f), fold_map_map]; refl } @[simp] theorem foldl_map (g : β → γ) (f : α → γ → α) (a : α) (l : t β) : foldl f a (g <$> l) = foldl (λ x y, f x (g y)) a l := by simp only [foldl, fold_map_map, (∘), flip] @[simp] theorem foldr_map (g : β → γ) (f : γ → α → α) (a : α) (l : t β) : foldr f a (g <$> l) = foldr (f ∘ g) a l := by simp only [foldr, fold_map_map, (∘), flip] @[simp] theorem to_list_eq_self {xs : list α} : to_list xs = xs := begin simp only [to_list_spec, fold_map, traverse], induction xs, case list.nil { refl }, case list.cons : _ _ ih { unfold list.traverse list.ret, rw ih, refl } end theorem length_to_list {xs : t α} : length xs = list.length (to_list xs) := begin unfold length, rw foldl_to_list, generalize : to_list xs = ys, let f := λ (n : ℕ) (a : α), n + 1, transitivity list.foldl f 0 ys, { generalize : 0 = n, induction ys with _ _ ih generalizing n, { simp only [list.foldl_nil] }, { simp only [list.foldl, ih (n+1)] } }, { induction ys with _ tl ih, { simp only [list.length, list.foldl_nil] }, { simp only [list.foldl, list.length], rw [← ih], exact tl.foldl_hom (λx, x+1) f f 0 (λ n x, rfl) } } end variables {m : Type u → Type u} [monad m] [is_lawful_monad m] lemma mfoldl_to_list {f : α → β → m α} {x : α} {xs : t β} : mfoldl f x xs = list.mfoldl f x (to_list xs) := calc mfoldl f x xs = unop (mfoldl.of_free_monoid f (to_list xs)) x : by simp only [mfoldl, to_list_spec, fold_map_hom_free (mfoldl.of_free_monoid f), mfoldl.of_free_monoid_comp_free_mk, mfoldl.get] ... = list.mfoldl f x (to_list xs) : by simp [mfoldl.of_free_monoid, unop_op, flip] lemma mfoldr_to_list (f : α → β → m β) (x : β) (xs : t α) : mfoldr f x xs = list.mfoldr f x (to_list xs) := begin change _ = mfoldr.of_free_monoid f (to_list xs) x, simp only [mfoldr, to_list_spec, fold_map_hom_free (mfoldr.of_free_monoid f), mfoldr.of_free_monoid_comp_free_mk, mfoldr.get] end @[simp] theorem mfoldl_map (g : β → γ) (f : α → γ → m α) (a : α) (l : t β) : mfoldl f a (g <$> l) = mfoldl (λ x y, f x (g y)) a l := by simp only [mfoldl, fold_map_map, (∘), flip] @[simp] theorem mfoldr_map (g : β → γ) (f : γ → α → m α) (a : α) (l : t β) : mfoldr f a (g <$> l) = mfoldr (f ∘ g) a l := by simp only [mfoldr, fold_map_map, (∘), flip] end equalities end traversable