/- Copyright (c) 2021 Thomas Browning. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Thomas Browning -/ import data.zmod.quotient /-! # Complements In this file we define the complement of a subgroup. ## Main definitions - `is_complement S T` where `S` and `T` are subsets of `G` states that every `g : G` can be written uniquely as a product `s * t` for `s ∈ S`, `t ∈ T`. - `left_transversals T` where `T` is a subset of `G` is the set of all left-complements of `T`, i.e. the set of all `S : set G` that contain exactly one element of each left coset of `T`. - `right_transversals S` where `S` is a subset of `G` is the set of all right-complements of `S`, i.e. the set of all `T : set G` that contain exactly one element of each right coset of `S`. - `transfer_transversal H g` is a specific `left_transversal` of `H` that is used in the computation of the transfer homomorphism evaluated at an element `g : G`. ## Main results - `is_complement_of_coprime` : Subgroups of coprime order are complements. -/ open_locale big_operators namespace subgroup variables {G : Type*} [group G] (H K : subgroup G) (S T : set G) /-- `S` and `T` are complements if `(*) : S × T → G` is a bijection. This notion generalizes left transversals, right transversals, and complementary subgroups. -/ @[to_additive "`S` and `T` are complements if `(*) : S × T → G` is a bijection"] def is_complement : Prop := function.bijective (λ x : S × T, x.1.1 * x.2.1) /-- `H` and `K` are complements if `(*) : H × K → G` is a bijection -/ @[to_additive "`H` and `K` are complements if `(*) : H × K → G` is a bijection"] abbreviation is_complement' := is_complement (H : set G) (K : set G) /-- The set of left-complements of `T : set G` -/ @[to_additive "The set of left-complements of `T : set G`"] def left_transversals : set (set G) := {S : set G | is_complement S T} /-- The set of right-complements of `S : set G` -/ @[to_additive "The set of right-complements of `S : set G`"] def right_transversals : set (set G) := {T : set G | is_complement S T} variables {H K S T} @[to_additive] lemma is_complement'_def : is_complement' H K ↔ is_complement (H : set G) (K : set G) := iff.rfl @[to_additive] lemma is_complement_iff_exists_unique : is_complement S T ↔ ∀ g : G, ∃! x : S × T, x.1.1 * x.2.1 = g := function.bijective_iff_exists_unique _ @[to_additive] lemma is_complement.exists_unique (h : is_complement S T) (g : G) : ∃! x : S × T, x.1.1 * x.2.1 = g := is_complement_iff_exists_unique.mp h g @[to_additive] lemma is_complement'.symm (h : is_complement' H K) : is_complement' K H := begin let ϕ : H × K ≃ K × H := equiv.mk (λ x, ⟨x.2⁻¹, x.1⁻¹⟩) (λ x, ⟨x.2⁻¹, x.1⁻¹⟩) (λ x, prod.ext (inv_inv _) (inv_inv _)) (λ x, prod.ext (inv_inv _) (inv_inv _)), let ψ : G ≃ G := equiv.mk (λ g : G, g⁻¹) (λ g : G, g⁻¹) inv_inv inv_inv, suffices : ψ ∘ (λ x : H × K, x.1.1 * x.2.1) = (λ x : K × H, x.1.1 * x.2.1) ∘ ϕ, { rwa [is_complement'_def, is_complement, ←equiv.bijective_comp, ←this, equiv.comp_bijective] }, exact funext (λ x, mul_inv_rev _ _), end @[to_additive] lemma is_complement'_comm : is_complement' H K ↔ is_complement' K H := ⟨is_complement'.symm, is_complement'.symm⟩ @[to_additive] lemma is_complement_top_singleton {g : G} : is_complement (⊤ : set G) {g} := ⟨λ ⟨x, _, rfl⟩ ⟨y, _, rfl⟩ h, prod.ext (subtype.ext (mul_right_cancel h)) rfl, λ x, ⟨⟨⟨x * g⁻¹, ⟨⟩⟩, g, rfl⟩, inv_mul_cancel_right x g⟩⟩ @[to_additive] lemma is_complement_singleton_top {g : G} : is_complement ({g} : set G) ⊤ := ⟨λ ⟨⟨_, rfl⟩, x⟩ ⟨⟨_, rfl⟩, y⟩ h, prod.ext rfl (subtype.ext (mul_left_cancel h)), λ x, ⟨⟨⟨g, rfl⟩, g⁻¹ * x, ⟨⟩⟩, mul_inv_cancel_left g x⟩⟩ @[to_additive] lemma is_complement_singleton_left {g : G} : is_complement {g} S ↔ S = ⊤ := begin refine ⟨λ h, top_le_iff.mp (λ x hx, _), λ h, (congr_arg _ h).mpr is_complement_singleton_top⟩, obtain ⟨⟨⟨z, rfl : z = g⟩, y, _⟩, hy⟩ := h.2 (g * x), rwa ← mul_left_cancel hy, end @[to_additive] lemma is_complement_singleton_right {g : G} : is_complement S {g} ↔ S = ⊤ := begin refine ⟨λ h, top_le_iff.mp (λ x hx, _), λ h, (congr_arg _ h).mpr is_complement_top_singleton⟩, obtain ⟨y, hy⟩ := h.2 (x * g), conv_rhs at hy { rw ← (show y.2.1 = g, from y.2.2) }, rw ← mul_right_cancel hy, exact y.1.2, end @[to_additive] lemma is_complement_top_left : is_complement ⊤ S ↔ ∃ g : G, S = {g} := begin refine ⟨λ h, set.exists_eq_singleton_iff_nonempty_subsingleton.mpr ⟨_, λ a ha b hb, _⟩, _⟩, { obtain ⟨a, ha⟩ := h.2 1, exact ⟨a.2.1, a.2.2⟩ }, { have : (⟨⟨_, mem_top a⁻¹⟩, ⟨a, ha⟩⟩ : (⊤ : set G) × S) = ⟨⟨_, mem_top b⁻¹⟩, ⟨b, hb⟩⟩ := h.1 ((inv_mul_self a).trans (inv_mul_self b).symm), exact subtype.ext_iff.mp ((prod.ext_iff.mp this).2) }, { rintro ⟨g, rfl⟩, exact is_complement_top_singleton }, end @[to_additive] lemma is_complement_top_right : is_complement S ⊤ ↔ ∃ g : G, S = {g} := begin refine ⟨λ h, set.exists_eq_singleton_iff_nonempty_subsingleton.mpr ⟨_, λ a ha b hb, _⟩, _⟩, { obtain ⟨a, ha⟩ := h.2 1, exact ⟨a.1.1, a.1.2⟩ }, { have : (⟨⟨a, ha⟩, ⟨_, mem_top a⁻¹⟩⟩ : S × (⊤ : set G)) = ⟨⟨b, hb⟩, ⟨_, mem_top b⁻¹⟩⟩ := h.1 ((mul_inv_self a).trans (mul_inv_self b).symm), exact subtype.ext_iff.mp ((prod.ext_iff.mp this).1) }, { rintro ⟨g, rfl⟩, exact is_complement_singleton_top }, end @[to_additive] lemma is_complement'_top_bot : is_complement' (⊤ : subgroup G) ⊥ := is_complement_top_singleton @[to_additive] lemma is_complement'_bot_top : is_complement' (⊥ : subgroup G) ⊤ := is_complement_singleton_top @[simp, to_additive] lemma is_complement'_bot_left : is_complement' ⊥ H ↔ H = ⊤ := is_complement_singleton_left.trans coe_eq_univ @[simp, to_additive] lemma is_complement'_bot_right : is_complement' H ⊥ ↔ H = ⊤ := is_complement_singleton_right.trans coe_eq_univ @[simp, to_additive] lemma is_complement'_top_left : is_complement' ⊤ H ↔ H = ⊥ := is_complement_top_left.trans coe_eq_singleton @[simp, to_additive] lemma is_complement'_top_right : is_complement' H ⊤ ↔ H = ⊥ := is_complement_top_right.trans coe_eq_singleton @[to_additive] lemma mem_left_transversals_iff_exists_unique_inv_mul_mem : S ∈ left_transversals T ↔ ∀ g : G, ∃! s : S, (s : G)⁻¹ * g ∈ T := begin rw [left_transversals, set.mem_set_of_eq, is_complement_iff_exists_unique], refine ⟨λ h g, _, λ h g, _⟩, { obtain ⟨x, h1, h2⟩ := h g, exact ⟨x.1, (congr_arg (∈ T) (eq_inv_mul_of_mul_eq h1)).mp x.2.2, λ y hy, (prod.ext_iff.mp (h2 ⟨y, y⁻¹ * g, hy⟩ (mul_inv_cancel_left y g))).1⟩ }, { obtain ⟨x, h1, h2⟩ := h g, refine ⟨⟨x, x⁻¹ * g, h1⟩, mul_inv_cancel_left x g, λ y hy, _⟩, have := h2 y.1 ((congr_arg (∈ T) (eq_inv_mul_of_mul_eq hy)).mp y.2.2), exact prod.ext this (subtype.ext (eq_inv_mul_of_mul_eq ((congr_arg _ this).mp hy))) }, end @[to_additive] lemma mem_right_transversals_iff_exists_unique_mul_inv_mem : S ∈ right_transversals T ↔ ∀ g : G, ∃! s : S, g * (s : G)⁻¹ ∈ T := begin rw [right_transversals, set.mem_set_of_eq, is_complement_iff_exists_unique], refine ⟨λ h g, _, λ h g, _⟩, { obtain ⟨x, h1, h2⟩ := h g, exact ⟨x.2, (congr_arg (∈ T) (eq_mul_inv_of_mul_eq h1)).mp x.1.2, λ y hy, (prod.ext_iff.mp (h2 ⟨⟨g * y⁻¹, hy⟩, y⟩ (inv_mul_cancel_right g y))).2⟩ }, { obtain ⟨x, h1, h2⟩ := h g, refine ⟨⟨⟨g * x⁻¹, h1⟩, x⟩, inv_mul_cancel_right g x, λ y hy, _⟩, have := h2 y.2 ((congr_arg (∈ T) (eq_mul_inv_of_mul_eq hy)).mp y.1.2), exact prod.ext (subtype.ext (eq_mul_inv_of_mul_eq ((congr_arg _ this).mp hy))) this }, end @[to_additive] lemma mem_left_transversals_iff_exists_unique_quotient_mk'_eq : S ∈ left_transversals (H : set G) ↔ ∀ q : quotient (quotient_group.left_rel H), ∃! s : S, quotient.mk' s.1 = q := begin simp_rw [mem_left_transversals_iff_exists_unique_inv_mul_mem, set_like.mem_coe, ← quotient_group.eq'], exact ⟨λ h q, quotient.induction_on' q h, λ h g, h (quotient.mk' g)⟩, end @[to_additive] lemma mem_right_transversals_iff_exists_unique_quotient_mk'_eq : S ∈ right_transversals (H : set G) ↔ ∀ q : quotient (quotient_group.right_rel H), ∃! s : S, quotient.mk' s.1 = q := begin simp_rw [mem_right_transversals_iff_exists_unique_mul_inv_mem, set_like.mem_coe, ← quotient_group.right_rel_apply, ← quotient.eq'], exact ⟨λ h q, quotient.induction_on' q h, λ h g, h (quotient.mk' g)⟩, end @[to_additive] lemma mem_left_transversals_iff_bijective : S ∈ left_transversals (H : set G) ↔ function.bijective (S.restrict (quotient.mk' : G → quotient (quotient_group.left_rel H))) := mem_left_transversals_iff_exists_unique_quotient_mk'_eq.trans (function.bijective_iff_exists_unique (S.restrict quotient.mk')).symm @[to_additive] lemma mem_right_transversals_iff_bijective : S ∈ right_transversals (H : set G) ↔ function.bijective (S.restrict (quotient.mk' : G → quotient (quotient_group.right_rel H))) := mem_right_transversals_iff_exists_unique_quotient_mk'_eq.trans (function.bijective_iff_exists_unique (S.restrict quotient.mk')).symm @[to_additive] lemma range_mem_left_transversals {f : G ⧸ H → G} (hf : ∀ q, ↑(f q) = q) : set.range f ∈ left_transversals (H : set G) := mem_left_transversals_iff_bijective.mpr ⟨by rintros ⟨-, q₁, rfl⟩ ⟨-, q₂, rfl⟩ h; exact congr_arg _ (((hf q₁).symm.trans h).trans (hf q₂)), λ q, ⟨⟨f q, q, rfl⟩, hf q⟩⟩ @[to_additive] lemma range_mem_right_transversals {f : quotient (quotient_group.right_rel H) → G} (hf : ∀ q, quotient.mk' (f q) = q) : set.range f ∈ right_transversals (H : set G) := mem_right_transversals_iff_bijective.mpr ⟨by rintros ⟨-, q₁, rfl⟩ ⟨-, q₂, rfl⟩ h; exact congr_arg _ (((hf q₁).symm.trans h).trans (hf q₂)), λ q, ⟨⟨f q, q, rfl⟩, hf q⟩⟩ @[to_additive] lemma exists_left_transversal (g : G) : ∃ S ∈ left_transversals (H : set G), g ∈ S := begin classical, refine ⟨set.range (function.update quotient.out' ↑g g), range_mem_left_transversals (λ q, _), g, function.update_same g g quotient.out'⟩, by_cases hq : q = g, { exact hq.symm ▸ congr_arg _ (function.update_same g g quotient.out') }, { exact eq.trans (congr_arg _ (function.update_noteq hq g quotient.out')) q.out_eq' }, end @[to_additive] lemma exists_right_transversal (g : G) : ∃ S ∈ right_transversals (H : set G), g ∈ S := begin classical, refine ⟨set.range (function.update quotient.out' _ g), range_mem_right_transversals (λ q, _), quotient.mk' g, function.update_same (quotient.mk' g) g quotient.out'⟩, by_cases hq : q = quotient.mk' g, { exact hq.symm ▸ congr_arg _ (function.update_same (quotient.mk' g) g quotient.out') }, { exact eq.trans (congr_arg _ (function.update_noteq hq g quotient.out')) q.out_eq' }, end namespace mem_left_transversals /-- A left transversal is in bijection with left cosets. -/ @[to_additive "A left transversal is in bijection with left cosets."] noncomputable def to_equiv (hS : S ∈ subgroup.left_transversals (H : set G)) : G ⧸ H ≃ S := (equiv.of_bijective _ (subgroup.mem_left_transversals_iff_bijective.mp hS)).symm @[to_additive] lemma mk'_to_equiv (hS : S ∈ subgroup.left_transversals (H : set G)) (q : G ⧸ H) : quotient.mk' (to_equiv hS q : G) = q := (to_equiv hS).symm_apply_apply q @[to_additive] lemma to_equiv_apply {f : G ⧸ H → G} (hf : ∀ q, (f q : G ⧸ H) = q) (q : G ⧸ H) : (to_equiv (range_mem_left_transversals hf) q : G) = f q := begin refine (subtype.ext_iff.mp _).trans (subtype.coe_mk (f q) ⟨q, rfl⟩), exact (to_equiv (range_mem_left_transversals hf)).apply_eq_iff_eq_symm_apply.mpr (hf q).symm, end /-- A left transversal can be viewed as a function mapping each element of the group to the chosen representative from that left coset. -/ @[to_additive "A left transversal can be viewed as a function mapping each element of the group to the chosen representative from that left coset."] noncomputable def to_fun (hS : S ∈ subgroup.left_transversals (H : set G)) : G → S := to_equiv hS ∘ quotient.mk' @[to_additive] lemma inv_to_fun_mul_mem (hS : S ∈ subgroup.left_transversals (H : set G)) (g : G) : (to_fun hS g : G)⁻¹ * g ∈ H := quotient_group.left_rel_apply.mp $ quotient.exact' $ mk'_to_equiv _ _ @[to_additive] lemma inv_mul_to_fun_mem (hS : S ∈ subgroup.left_transversals (H : set G)) (g : G) : g⁻¹ * to_fun hS g ∈ H := (congr_arg (∈ H) (by rw [mul_inv_rev, inv_inv])).mp (H.inv_mem (inv_to_fun_mul_mem hS g)) end mem_left_transversals namespace mem_right_transversals /-- A right transversal is in bijection with right cosets. -/ @[to_additive "A right transversal is in bijection with right cosets."] noncomputable def to_equiv (hS : S ∈ subgroup.right_transversals (H : set G)) : quotient (quotient_group.right_rel H) ≃ S := (equiv.of_bijective _ (subgroup.mem_right_transversals_iff_bijective.mp hS)).symm @[to_additive] lemma mk'_to_equiv (hS : S ∈ subgroup.right_transversals (H : set G)) (q : quotient (quotient_group.right_rel H)) : quotient.mk' (to_equiv hS q : G) = q := (to_equiv hS).symm_apply_apply q @[to_additive] lemma to_equiv_apply {f : quotient (quotient_group.right_rel H) → G} (hf : ∀ q, quotient.mk' (f q) = q) (q : quotient (quotient_group.right_rel H)) : (to_equiv (range_mem_right_transversals hf) q : G) = f q := begin refine (subtype.ext_iff.mp _).trans (subtype.coe_mk (f q) ⟨q, rfl⟩), exact (to_equiv (range_mem_right_transversals hf)).apply_eq_iff_eq_symm_apply.mpr (hf q).symm, end /-- A right transversal can be viewed as a function mapping each element of the group to the chosen representative from that right coset. -/ @[to_additive "A right transversal can be viewed as a function mapping each element of the group to the chosen representative from that right coset."] noncomputable def to_fun (hS : S ∈ subgroup.right_transversals (H : set G)) : G → S := to_equiv hS ∘ quotient.mk' @[to_additive] lemma mul_inv_to_fun_mem (hS : S ∈ subgroup.right_transversals (H : set G)) (g : G) : g * (to_fun hS g : G)⁻¹ ∈ H := quotient_group.right_rel_apply.mp $ quotient.exact' $ mk'_to_equiv _ _ @[to_additive] lemma to_fun_mul_inv_mem (hS : S ∈ subgroup.right_transversals (H : set G)) (g : G) : (to_fun hS g : G) * g⁻¹ ∈ H := (congr_arg (∈ H) (by rw [mul_inv_rev, inv_inv])).mp (H.inv_mem (mul_inv_to_fun_mem hS g)) end mem_right_transversals section action open_locale pointwise open mul_action mem_left_transversals variables {F : Type*} [group F] [mul_action F G] [quotient_action F H] @[to_additive] instance : mul_action F (left_transversals (H : set G)) := { smul := λ f T, ⟨f • T, by { refine mem_left_transversals_iff_exists_unique_inv_mul_mem.mpr (λ g, _), obtain ⟨t, ht1, ht2⟩ := mem_left_transversals_iff_exists_unique_inv_mul_mem.mp T.2 (f⁻¹ • g), refine ⟨⟨f • t, set.smul_mem_smul_set t.2⟩, _, _⟩, { exact (congr_arg _ (smul_inv_smul f g)).mp (quotient_action.inv_mul_mem f ht1) }, { rintros ⟨-, t', ht', rfl⟩ h, replace h := quotient_action.inv_mul_mem f⁻¹ h, simp only [subtype.ext_iff, subtype.coe_mk, smul_left_cancel_iff, inv_smul_smul] at h ⊢, exact subtype.ext_iff.mp (ht2 ⟨t', ht'⟩ h) } }⟩, one_smul := λ T, subtype.ext (one_smul F T), mul_smul := λ f₁ f₂ T, subtype.ext (mul_smul f₁ f₂ T) } @[to_additive] lemma smul_to_fun (f : F) (T : left_transversals (H : set G)) (g : G) : (f • to_fun T.2 g : G) = to_fun (f • T).2 (f • g) := subtype.ext_iff.mp $ @unique_of_exists_unique ↥(f • T) (λ s, (↑s)⁻¹ * f • g ∈ H) (mem_left_transversals_iff_exists_unique_inv_mul_mem.mp (f • T).2 (f • g)) ⟨f • to_fun T.2 g, set.smul_mem_smul_set (subtype.coe_prop _)⟩ (to_fun (f • T).2 (f • g)) (quotient_action.inv_mul_mem f (inv_to_fun_mul_mem T.2 g)) (inv_to_fun_mul_mem (f • T).2 (f • g)) @[to_additive] lemma smul_to_equiv (f : F) (T : left_transversals (H : set G)) (q : G ⧸ H) : f • (to_equiv T.2 q : G) = to_equiv (f • T).2 (f • q) := quotient.induction_on' q (λ g, smul_to_fun f T g) @[to_additive] lemma smul_apply_eq_smul_apply_inv_smul (f : F) (T : left_transversals (H : set G)) (q : G ⧸ H) : (to_equiv (f • T).2 q : G) = f • (to_equiv T.2 (f⁻¹ • q) : G) := by rw [smul_to_equiv, smul_inv_smul] end action @[to_additive] instance : inhabited (left_transversals (H : set G)) := ⟨⟨set.range quotient.out', range_mem_left_transversals quotient.out_eq'⟩⟩ @[to_additive] instance : inhabited (right_transversals (H : set G)) := ⟨⟨set.range quotient.out', range_mem_right_transversals quotient.out_eq'⟩⟩ lemma is_complement'.is_compl (h : is_complement' H K) : is_compl H K := begin refine ⟨λ g ⟨p, q⟩, let x : H × K := ⟨⟨g, p⟩, 1⟩, y : H × K := ⟨1, g, q⟩ in subtype.ext_iff.mp (prod.ext_iff.mp (show x = y, from h.1 ((mul_one g).trans (one_mul g).symm))).1, λ g _, _⟩, obtain ⟨⟨h, k⟩, rfl⟩ := h.2 g, exact subgroup.mul_mem_sup h.2 k.2, end lemma is_complement'.sup_eq_top (h : subgroup.is_complement' H K) : H ⊔ K = ⊤ := h.is_compl.sup_eq_top lemma is_complement'.disjoint (h : is_complement' H K) : disjoint H K := h.is_compl.disjoint lemma is_complement.card_mul [fintype G] [fintype S] [fintype T] (h : is_complement S T) : fintype.card S * fintype.card T = fintype.card G := (fintype.card_prod _ _).symm.trans (fintype.card_of_bijective h) lemma is_complement'.card_mul [fintype G] [fintype H] [fintype K] (h : is_complement' H K) : fintype.card H * fintype.card K = fintype.card G := h.card_mul lemma is_complement'_of_card_mul_and_disjoint [fintype G] [fintype H] [fintype K] (h1 : fintype.card H * fintype.card K = fintype.card G) (h2 : disjoint H K) : is_complement' H K := begin refine (fintype.bijective_iff_injective_and_card _).mpr ⟨λ x y h, _, (fintype.card_prod H K).trans h1⟩, rw [←eq_inv_mul_iff_mul_eq, ←mul_assoc, ←mul_inv_eq_iff_eq_mul] at h, change ↑(x.2 * y.2⁻¹) = ↑(x.1⁻¹ * y.1) at h, rw [prod.ext_iff, ←@inv_mul_eq_one H _ x.1 y.1, ←@mul_inv_eq_one K _ x.2 y.2, subtype.ext_iff, subtype.ext_iff, coe_one, coe_one, h, and_self, ←mem_bot, ←h2.eq_bot, mem_inf], exact ⟨subtype.mem ((x.1)⁻¹ * (y.1)), (congr_arg (∈ K) h).mp (subtype.mem (x.2 * (y.2)⁻¹))⟩, end lemma is_complement'_iff_card_mul_and_disjoint [fintype G] [fintype H] [fintype K] : is_complement' H K ↔ fintype.card H * fintype.card K = fintype.card G ∧ disjoint H K := ⟨λ h, ⟨h.card_mul, h.disjoint⟩, λ h, is_complement'_of_card_mul_and_disjoint h.1 h.2⟩ lemma is_complement'_of_coprime [fintype G] [fintype H] [fintype K] (h1 : fintype.card H * fintype.card K = fintype.card G) (h2 : nat.coprime (fintype.card H) (fintype.card K)) : is_complement' H K := is_complement'_of_card_mul_and_disjoint h1 (disjoint_iff.mpr (inf_eq_bot_of_coprime h2)) lemma is_complement'_stabilizer {α : Type*} [mul_action G α] (a : α) (h1 : ∀ (h : H), h • a = a → h = 1) (h2 : ∀ g : G, ∃ h : H, h • (g • a) = a) : is_complement' H (mul_action.stabilizer G a) := begin refine is_complement_iff_exists_unique.mpr (λ g, _), obtain ⟨h, hh⟩ := h2 g, have hh' : (↑h * g) • a = a := by rwa [mul_smul], refine ⟨⟨h⁻¹, h * g, hh'⟩, inv_mul_cancel_left h g, _⟩, rintros ⟨h', g, hg : g • a = a⟩ rfl, specialize h1 (h * h') (by rwa [mul_smul, smul_def h', ←hg, ←mul_smul, hg]), refine prod.ext (eq_inv_of_mul_eq_one_right h1) (subtype.ext _), rwa [subtype.ext_iff, coe_one, coe_mul, ←self_eq_mul_left, mul_assoc ↑h ↑h' g] at h1, end end subgroup namespace subgroup open equiv function mem_left_transversals mul_action mul_action.quotient zmod universe u variables {G : Type u} [group G] (H : subgroup G) (g : G) /-- Partition `G ⧸ H` into orbits of the action of `g : G`. -/ noncomputable def quotient_equiv_sigma_zmod : G ⧸ H ≃ Σ (q : orbit_rel.quotient (zpowers g) (G ⧸ H)), zmod (minimal_period ((•) g) q.out') := (self_equiv_sigma_orbits (zpowers g) (G ⧸ H)).trans (sigma_congr_right (λ q, orbit_zpowers_equiv g q.out')) lemma quotient_equiv_sigma_zmod_symm_apply (q : orbit_rel.quotient (zpowers g) (G ⧸ H)) (k : zmod (minimal_period ((•) g) q.out')) : (quotient_equiv_sigma_zmod H g).symm ⟨q, k⟩ = g ^ (k : ℤ) • q.out' := rfl lemma quotient_equiv_sigma_zmod_apply (q : orbit_rel.quotient (zpowers g) (G ⧸ H)) (k : ℤ) : quotient_equiv_sigma_zmod H g (g ^ k • q.out') = ⟨q, k⟩ := by rw [apply_eq_iff_eq_symm_apply, quotient_equiv_sigma_zmod_symm_apply, zmod.coe_int_cast, zpow_smul_mod_minimal_period] /-- The transfer transversal as a function. Given a `⟨g⟩`-orbit `q₀, g • q₀, ..., g ^ (m - 1) • q₀` in `G ⧸ H`, an element `g ^ k • q₀` is mapped to `g ^ k • g₀` for a fixed choice of representative `g₀` of `q₀`. -/ noncomputable def transfer_function : G ⧸ H → G := λ q, g ^ ((quotient_equiv_sigma_zmod H g q).2 : ℤ) * (quotient_equiv_sigma_zmod H g q).1.out'.out' lemma transfer_function_apply (q : G ⧸ H) : transfer_function H g q = g ^ ((quotient_equiv_sigma_zmod H g q).2 : ℤ) * (quotient_equiv_sigma_zmod H g q).1.out'.out' := rfl lemma coe_transfer_function (q : G ⧸ H) : ↑(transfer_function H g q) = q := by rw [transfer_function_apply, ←smul_eq_mul, coe_smul_out', ←quotient_equiv_sigma_zmod_symm_apply, sigma.eta, symm_apply_apply] /-- The transfer transversal as a set. Contains elements of the form `g ^ k • g₀` for fixed choices of representatives `g₀` of fixed choices of representatives `q₀` of `⟨g⟩`-orbits in `G ⧸ H`. -/ def transfer_set : set G := set.range (transfer_function H g) lemma mem_transfer_set (q : G ⧸ H) : transfer_function H g q ∈ transfer_set H g := ⟨q, rfl⟩ /-- The transfer transversal. Contains elements of the form `g ^ k • g₀` for fixed choices of representatives `g₀` of fixed choices of representatives `q₀` of `⟨g⟩`-orbits in `G ⧸ H`. -/ def transfer_transversal : left_transversals (H : set G) := ⟨transfer_set H g, range_mem_left_transversals (coe_transfer_function H g)⟩ lemma transfer_transversal_apply (q : G ⧸ H) : ↑(to_equiv (transfer_transversal H g).2 q) = transfer_function H g q := to_equiv_apply (coe_transfer_function H g) q lemma transfer_transversal_apply' (q : orbit_rel.quotient (zpowers g) (G ⧸ H)) (k : zmod (minimal_period ((•) g) q.out')) : ↑(to_equiv (transfer_transversal H g).2 (g ^ (k : ℤ) • q.out')) = g ^ (k : ℤ) * q.out'.out' := by rw [transfer_transversal_apply, transfer_function_apply, ←quotient_equiv_sigma_zmod_symm_apply, apply_symm_apply] lemma transfer_transversal_apply'' (q : orbit_rel.quotient (zpowers g) (G ⧸ H)) (k : zmod (minimal_period ((•) g) q.out')) : ↑(to_equiv (g • transfer_transversal H g).2 (g ^ (k : ℤ) • q.out')) = if k = 0 then g ^ minimal_period ((•) g) q.out' * q.out'.out' else g ^ (k : ℤ) * q.out'.out' := begin rw [smul_apply_eq_smul_apply_inv_smul, transfer_transversal_apply, transfer_function_apply, ←mul_smul, ←zpow_neg_one, ←zpow_add, quotient_equiv_sigma_zmod_apply, smul_eq_mul, ←mul_assoc, ←zpow_one_add, int.cast_add, int.cast_neg, int.cast_one, int_cast_cast, cast_id', id.def, ←sub_eq_neg_add, cast_sub_one, add_sub_cancel'_right], by_cases hk : k = 0, { rw [if_pos hk, if_pos hk, zpow_coe_nat] }, { rw [if_neg hk, if_neg hk] }, end end subgroup