/- Copyright (c) 2018 Chris Hughes. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Chris Hughes, Thomas Browning -/ import data.nat.factorization.basic import data.set_like.fintype import group_theory.group_action.conj_act import group_theory.p_group import group_theory.noncomm_pi_coprod /-! # Sylow theorems The Sylow theorems are the following results for every finite group `G` and every prime number `p`. * There exists a Sylow `p`-subgroup of `G`. * All Sylow `p`-subgroups of `G` are conjugate to each other. * Let `nₚ` be the number of Sylow `p`-subgroups of `G`, then `nₚ` divides the index of the Sylow `p`-subgroup, `nₚ ≡ 1 [MOD p]`, and `nₚ` is equal to the index of the normalizer of the Sylow `p`-subgroup in `G`. ## Main definitions * `sylow p G` : The type of Sylow `p`-subgroups of `G`. ## Main statements * `exists_subgroup_card_pow_prime`: A generalization of Sylow's first theorem: For every prime power `pⁿ` dividing the cardinality of `G`, there exists a subgroup of `G` of order `pⁿ`. * `is_p_group.exists_le_sylow`: A generalization of Sylow's first theorem: Every `p`-subgroup is contained in a Sylow `p`-subgroup. * `sylow_conjugate`: A generalization of Sylow's second theorem: If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. * `card_sylow_modeq_one`: A generalization of Sylow's third theorem: If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ open fintype mul_action subgroup section infinite_sylow variables (p : ℕ) (G : Type*) [group G] /-- A Sylow `p`-subgroup is a maximal `p`-subgroup. -/ structure sylow extends subgroup G := (is_p_group' : is_p_group p to_subgroup) (is_maximal' : ∀ {Q : subgroup G}, is_p_group p Q → to_subgroup ≤ Q → Q = to_subgroup) variables {p} {G} namespace sylow instance : has_coe (sylow p G) (subgroup G) := ⟨sylow.to_subgroup⟩ @[simp] lemma to_subgroup_eq_coe {P : sylow p G} : P.to_subgroup = ↑P := rfl @[ext] lemma ext {P Q : sylow p G} (h : (P : subgroup G) = Q) : P = Q := by cases P; cases Q; congr' lemma ext_iff {P Q : sylow p G} : P = Q ↔ (P : subgroup G) = Q := ⟨congr_arg coe, ext⟩ instance : set_like (sylow p G) G := { coe := coe, coe_injective' := λ P Q h, ext (set_like.coe_injective h) } instance : subgroup_class (sylow p G) G := { mul_mem := λ s, s.mul_mem', one_mem := λ s, s.one_mem', inv_mem := λ s, s.inv_mem' } variables (P : sylow p G) /-- The action by a Sylow subgroup is the action by the underlying group. -/ instance mul_action_left {α : Type*} [mul_action G α] : mul_action P α := subgroup.mul_action ↑P variables {K : Type*} [group K] (ϕ : K →* G) {N : subgroup G} /-- The preimage of a Sylow subgroup under a p-group-kernel homomorphism is a Sylow subgroup. -/ def comap_of_ker_is_p_group (hϕ : is_p_group p ϕ.ker) (h : ↑P ≤ ϕ.range) : sylow p K := { P.1.comap ϕ with is_p_group' := P.2.comap_of_ker_is_p_group ϕ hϕ, is_maximal' := λ Q hQ hle, by { rw ← P.3 (hQ.map ϕ) (le_trans (ge_of_eq (map_comap_eq_self h)) (map_mono hle)), exact (comap_map_eq_self ((P.1.ker_le_comap ϕ).trans hle)).symm }, } @[simp] lemma coe_comap_of_ker_is_p_group (hϕ : is_p_group p ϕ.ker) (h : ↑P ≤ ϕ.range) : ↑(P.comap_of_ker_is_p_group ϕ hϕ h) = subgroup.comap ϕ ↑P := rfl /-- The preimage of a Sylow subgroup under an injective homomorphism is a Sylow subgroup. -/ def comap_of_injective (hϕ : function.injective ϕ) (h : ↑P ≤ ϕ.range) : sylow p K := P.comap_of_ker_is_p_group ϕ (is_p_group.ker_is_p_group_of_injective hϕ) h @[simp] lemma coe_comap_of_injective (hϕ : function.injective ϕ) (h : ↑P ≤ ϕ.range) : ↑(P.comap_of_injective ϕ hϕ h) = subgroup.comap ϕ ↑P := rfl /-- A sylow subgroup of G is also a sylow subgroup of a subgroup of G. -/ def subtype (h : ↑P ≤ N) : sylow p N := P.comap_of_injective N.subtype subtype.coe_injective (by simp [h]) @[simp] lemma coe_subtype (h : ↑P ≤ N) : ↑(P.subtype h) = subgroup.comap N.subtype ↑P := rfl end sylow /-- A generalization of **Sylow's first theorem**. Every `p`-subgroup is contained in a Sylow `p`-subgroup. -/ lemma is_p_group.exists_le_sylow {P : subgroup G} (hP : is_p_group p P) : ∃ Q : sylow p G, P ≤ Q := exists.elim (zorn_nonempty_partial_order₀ {Q : subgroup G | is_p_group p Q} (λ c hc1 hc2 Q hQ, ⟨ { carrier := ⋃ (R : c), R, one_mem' := ⟨Q, ⟨⟨Q, hQ⟩, rfl⟩, Q.one_mem⟩, inv_mem' := λ g ⟨_, ⟨R, rfl⟩, hg⟩, ⟨R, ⟨R, rfl⟩, R.1.inv_mem hg⟩, mul_mem' := λ g h ⟨_, ⟨R, rfl⟩, hg⟩ ⟨_, ⟨S, rfl⟩, hh⟩, (hc2.total R.2 S.2).elim (λ T, ⟨S, ⟨S, rfl⟩, S.1.mul_mem (T hg) hh⟩) (λ T, ⟨R, ⟨R, rfl⟩, R.1.mul_mem hg (T hh)⟩) }, λ ⟨g, _, ⟨S, rfl⟩, hg⟩, by { refine exists_imp_exists (λ k hk, _) (hc1 S.2 ⟨g, hg⟩), rwa [subtype.ext_iff, coe_pow] at hk ⊢ }, λ M hM g hg, ⟨M, ⟨⟨M, hM⟩, rfl⟩, hg⟩⟩) P hP) (λ Q ⟨hQ1, hQ2, hQ3⟩, ⟨⟨Q, hQ1, hQ3⟩, hQ2⟩) instance sylow.nonempty : nonempty (sylow p G) := nonempty_of_exists is_p_group.of_bot.exists_le_sylow noncomputable instance sylow.inhabited : inhabited (sylow p G) := classical.inhabited_of_nonempty sylow.nonempty lemma sylow.exists_comap_eq_of_ker_is_p_group {H : Type*} [group H] (P : sylow p H) {f : H →* G} (hf : is_p_group p f.ker) : ∃ Q : sylow p G, (Q : subgroup G).comap f = P := exists_imp_exists (λ Q hQ, P.3 (Q.2.comap_of_ker_is_p_group f hf) (map_le_iff_le_comap.mp hQ)) (P.2.map f).exists_le_sylow lemma sylow.exists_comap_eq_of_injective {H : Type*} [group H] (P : sylow p H) {f : H →* G} (hf : function.injective f) : ∃ Q : sylow p G, (Q : subgroup G).comap f = P := P.exists_comap_eq_of_ker_is_p_group (is_p_group.ker_is_p_group_of_injective hf) lemma sylow.exists_comap_subtype_eq {H : subgroup G} (P : sylow p H) : ∃ Q : sylow p G, (Q : subgroup G).comap H.subtype = P := P.exists_comap_eq_of_injective subtype.coe_injective /-- If the kernel of `f : H →* G` is a `p`-group, then `fintype (sylow p G)` implies `fintype (sylow p H)`. -/ noncomputable def sylow.fintype_of_ker_is_p_group {H : Type*} [group H] {f : H →* G} (hf : is_p_group p f.ker) [fintype (sylow p G)] : fintype (sylow p H) := let h_exists := λ P : sylow p H, P.exists_comap_eq_of_ker_is_p_group hf, g : sylow p H → sylow p G := λ P, classical.some (h_exists P), hg : ∀ P : sylow p H, (g P).1.comap f = P := λ P, classical.some_spec (h_exists P) in fintype.of_injective g (λ P Q h, sylow.ext (by simp only [←hg, h])) /-- If `f : H →* G` is injective, then `fintype (sylow p G)` implies `fintype (sylow p H)`. -/ noncomputable def sylow.fintype_of_injective {H : Type*} [group H] {f : H →* G} (hf : function.injective f) [fintype (sylow p G)] : fintype (sylow p H) := sylow.fintype_of_ker_is_p_group (is_p_group.ker_is_p_group_of_injective hf) /-- If `H` is a subgroup of `G`, then `fintype (sylow p G)` implies `fintype (sylow p H)`. -/ noncomputable instance (H : subgroup G) [fintype (sylow p G)] : fintype (sylow p H) := sylow.fintype_of_injective (show function.injective H.subtype, from subtype.coe_injective) open_locale pointwise /-- `subgroup.pointwise_mul_action` preserves Sylow subgroups. -/ instance sylow.pointwise_mul_action {α : Type*} [group α] [mul_distrib_mul_action α G] : mul_action α (sylow p G) := { smul := λ g P, ⟨g • P, P.2.map _, λ Q hQ hS, inv_smul_eq_iff.mp (P.3 (hQ.map _) (λ s hs, (congr_arg (∈ g⁻¹ • Q) (inv_smul_smul g s)).mp (smul_mem_pointwise_smul (g • s) g⁻¹ Q (hS (smul_mem_pointwise_smul s g P hs)))))⟩, one_smul := λ P, sylow.ext (one_smul α P), mul_smul := λ g h P, sylow.ext (mul_smul g h P) } lemma sylow.pointwise_smul_def {α : Type*} [group α] [mul_distrib_mul_action α G] {g : α} {P : sylow p G} : ↑(g • P) = g • (P : subgroup G) := rfl instance sylow.mul_action : mul_action G (sylow p G) := comp_hom _ mul_aut.conj lemma sylow.smul_def {g : G} {P : sylow p G} : g • P = mul_aut.conj g • P := rfl lemma sylow.coe_subgroup_smul {g : G} {P : sylow p G} : ↑(g • P) = mul_aut.conj g • (P : subgroup G) := rfl lemma sylow.coe_smul {g : G} {P : sylow p G} : ↑(g • P) = mul_aut.conj g • (P : set G) := rfl lemma sylow.smul_le {P : sylow p G} {H : subgroup G} (hP : ↑P ≤ H) (h : H) : ↑(h • P) ≤ H := subgroup.conj_smul_le_of_le hP h lemma sylow.smul_subtype {P : sylow p G} {H : subgroup G} (hP : ↑P ≤ H) (h : H) : h • P.subtype hP = (h • P).subtype (sylow.smul_le hP h) := sylow.ext (subgroup.conj_smul_subgroup_of hP h) lemma sylow.smul_eq_iff_mem_normalizer {g : G} {P : sylow p G} : g • P = P ↔ g ∈ (P : subgroup G).normalizer := begin rw [eq_comm, set_like.ext_iff, ←inv_mem_iff, mem_normalizer_iff, inv_inv], exact forall_congr (λ h, iff_congr iff.rfl ⟨λ ⟨a, b, c⟩, (congr_arg _ c).mp ((congr_arg (∈ P.1) (mul_aut.inv_apply_self G (mul_aut.conj g) a)).mpr b), λ hh, ⟨(mul_aut.conj g)⁻¹ h, hh, mul_aut.apply_inv_self G (mul_aut.conj g) h⟩⟩), end lemma sylow.smul_eq_of_normal {g : G} {P : sylow p G} [h : (P : subgroup G).normal] : g • P = P := by simp only [sylow.smul_eq_iff_mem_normalizer, normalizer_eq_top.mpr h, mem_top] lemma subgroup.sylow_mem_fixed_points_iff (H : subgroup G) {P : sylow p G} : P ∈ fixed_points H (sylow p G) ↔ H ≤ (P : subgroup G).normalizer := by simp_rw [set_like.le_def, ←sylow.smul_eq_iff_mem_normalizer]; exact subtype.forall lemma is_p_group.inf_normalizer_sylow {P : subgroup G} (hP : is_p_group p P) (Q : sylow p G) : P ⊓ (Q : subgroup G).normalizer = P ⊓ Q := le_antisymm (le_inf inf_le_left (sup_eq_right.mp (Q.3 (hP.to_inf_left.to_sup_of_normal_right' Q.2 inf_le_right) le_sup_right))) (inf_le_inf_left P le_normalizer) lemma is_p_group.sylow_mem_fixed_points_iff {P : subgroup G} (hP : is_p_group p P) {Q : sylow p G} : Q ∈ fixed_points P (sylow p G) ↔ P ≤ Q := by rw [P.sylow_mem_fixed_points_iff, ←inf_eq_left, hP.inf_normalizer_sylow, inf_eq_left] /-- A generalization of **Sylow's second theorem**. If the number of Sylow `p`-subgroups is finite, then all Sylow `p`-subgroups are conjugate. -/ instance [hp : fact p.prime] [fintype (sylow p G)] : is_pretransitive G (sylow p G) := ⟨λ P Q, by { classical, have H := λ {R : sylow p G} {S : orbit G P}, calc S ∈ fixed_points R (orbit G P) ↔ S.1 ∈ fixed_points R (sylow p G) : forall_congr (λ a, subtype.ext_iff) ... ↔ R.1 ≤ S : R.2.sylow_mem_fixed_points_iff ... ↔ S.1.1 = R : ⟨λ h, R.3 S.1.2 h, ge_of_eq⟩, suffices : set.nonempty (fixed_points Q (orbit G P)), { exact exists.elim this (λ R hR, (congr_arg _ (sylow.ext (H.mp hR))).mp R.2) }, apply Q.2.nonempty_fixed_point_of_prime_not_dvd_card, refine λ h, hp.out.not_dvd_one (nat.modeq_zero_iff_dvd.mp _), calc 1 = card (fixed_points P (orbit G P)) : _ ... ≡ card (orbit G P) [MOD p] : (P.2.card_modeq_card_fixed_points (orbit G P)).symm ... ≡ 0 [MOD p] : nat.modeq_zero_iff_dvd.mpr h, rw ← set.card_singleton (⟨P, mem_orbit_self P⟩ : orbit G P), refine card_congr' (congr_arg _ (eq.symm _)), rw set.eq_singleton_iff_unique_mem, exact ⟨H.mpr rfl, λ R h, subtype.ext (sylow.ext (H.mp h))⟩ }⟩ variables (p) (G) /-- A generalization of **Sylow's third theorem**. If the number of Sylow `p`-subgroups is finite, then it is congruent to `1` modulo `p`. -/ lemma card_sylow_modeq_one [fact p.prime] [fintype (sylow p G)] : card (sylow p G) ≡ 1 [MOD p] := begin refine sylow.nonempty.elim (λ P : sylow p G, _), have : fixed_points P.1 (sylow p G) = {P} := set.ext (λ Q : sylow p G, calc Q ∈ fixed_points P (sylow p G) ↔ P.1 ≤ Q : P.2.sylow_mem_fixed_points_iff ... ↔ Q.1 = P.1 : ⟨P.3 Q.2, ge_of_eq⟩ ... ↔ Q ∈ {P} : sylow.ext_iff.symm.trans set.mem_singleton_iff.symm), haveI : fintype (fixed_points P.1 (sylow p G)), { rw this, apply_instance }, have : card (fixed_points P.1 (sylow p G)) = 1, { simp [this] }, exact (P.2.card_modeq_card_fixed_points (sylow p G)).trans (by rw this), end lemma not_dvd_card_sylow [hp : fact p.prime] [fintype (sylow p G)] : ¬ p ∣ card (sylow p G) := λ h, hp.1.ne_one (nat.dvd_one.mp ((nat.modeq_iff_dvd' zero_le_one).mp ((nat.modeq_zero_iff_dvd.mpr h).symm.trans (card_sylow_modeq_one p G)))) variables {p} {G} /-- Sylow subgroups are isomorphic -/ def sylow.equiv_smul (P : sylow p G) (g : G) : P ≃* (g • P : sylow p G) := equiv_smul (mul_aut.conj g) ↑P /-- Sylow subgroups are isomorphic -/ noncomputable def sylow.equiv [fact p.prime] [fintype (sylow p G)] (P Q : sylow p G) : P ≃* Q := begin rw ← classical.some_spec (exists_smul_eq G P Q), exact P.equiv_smul (classical.some (exists_smul_eq G P Q)), end @[simp] lemma sylow.orbit_eq_top [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : orbit G P = ⊤ := top_le_iff.mp (λ Q hQ, exists_smul_eq G P Q) lemma sylow.stabilizer_eq_normalizer (P : sylow p G) : stabilizer G P = (P : subgroup G).normalizer := ext (λ g, sylow.smul_eq_iff_mem_normalizer) /-- Sylow `p`-subgroups are in bijection with cosets of the normalizer of a Sylow `p`-subgroup -/ noncomputable def sylow.equiv_quotient_normalizer [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : sylow p G ≃ G ⧸ (P : subgroup G).normalizer := calc sylow p G ≃ (⊤ : set (sylow p G)) : (equiv.set.univ (sylow p G)).symm ... ≃ orbit G P : by rw P.orbit_eq_top ... ≃ G ⧸ (stabilizer G P) : orbit_equiv_quotient_stabilizer G P ... ≃ G ⧸ (P : subgroup G).normalizer : by rw P.stabilizer_eq_normalizer noncomputable instance [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : fintype (G ⧸ (P : subgroup G).normalizer) := of_equiv (sylow p G) P.equiv_quotient_normalizer lemma card_sylow_eq_card_quotient_normalizer [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : card (sylow p G) = card (G ⧸ (P : subgroup G).normalizer) := card_congr P.equiv_quotient_normalizer lemma card_sylow_eq_index_normalizer [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : card (sylow p G) = (P : subgroup G).normalizer.index := (card_sylow_eq_card_quotient_normalizer P).trans (P : subgroup G).normalizer.index_eq_card.symm lemma card_sylow_dvd_index [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : card (sylow p G) ∣ (P : subgroup G).index := ((congr_arg _ (card_sylow_eq_index_normalizer P)).mp dvd_rfl).trans (index_dvd_of_le le_normalizer) lemma not_dvd_index_sylow' [hp : fact p.prime] (P : sylow p G) [(P : subgroup G).normal] (hP : (P : subgroup G).index ≠ 0) : ¬ p ∣ (P : subgroup G).index := begin intro h, haveI : fintype (G ⧸ (P : subgroup G)) := fintype_of_index_ne_zero hP, rw index_eq_card at h, obtain ⟨x, hx⟩ := exists_prime_order_of_dvd_card p h, have h := is_p_group.of_card ((order_eq_card_zpowers.symm.trans hx).trans (pow_one p).symm), let Q := (zpowers x).comap (quotient_group.mk' (P : subgroup G)), have hQ : is_p_group p Q, { apply h.comap_of_ker_is_p_group, rw [quotient_group.ker_mk], exact P.2 }, replace hp := mt order_of_eq_one_iff.mpr (ne_of_eq_of_ne hx hp.1.ne_one), rw [←zpowers_eq_bot, ←ne, ←bot_lt_iff_ne_bot, ←comap_lt_comap_of_surjective (quotient_group.mk'_surjective _), monoid_hom.comap_bot, quotient_group.ker_mk] at hp, exact hp.ne' (P.3 hQ hp.le), end lemma not_dvd_index_sylow [hp : fact p.prime] [fintype (sylow p G)] (P : sylow p G) (hP : relindex ↑P (P : subgroup G).normalizer ≠ 0) : ¬ p ∣ (P : subgroup G).index := begin rw [←relindex_mul_index le_normalizer, ←card_sylow_eq_index_normalizer], haveI : (P.subtype le_normalizer : subgroup (P : subgroup G).normalizer).normal := subgroup.normal_in_normalizer, replace hP := not_dvd_index_sylow' (P.subtype le_normalizer) hP, exact hp.1.not_dvd_mul hP (not_dvd_card_sylow p G), end /-- Frattini's Argument: If `N` is a normal subgroup of `G`, and if `P` is a Sylow `p`-subgroup of `N`, then `N_G(P) ⊔ N = G`. -/ lemma sylow.normalizer_sup_eq_top {p : ℕ} [fact p.prime] {N : subgroup G} [N.normal] [fintype (sylow p N)] (P : sylow p N) : ((↑P : subgroup N).map N.subtype).normalizer ⊔ N = ⊤ := begin refine top_le_iff.mp (λ g hg, _), obtain ⟨n, hn⟩ := exists_smul_eq N ((mul_aut.conj_normal g : mul_aut N) • P) P, rw [←inv_mul_cancel_left ↑n g, sup_comm], apply mul_mem_sup (N.inv_mem n.2), rw [sylow.smul_def, ←mul_smul, ←mul_aut.conj_normal_coe, ←mul_aut.conj_normal.map_mul, sylow.ext_iff, sylow.pointwise_smul_def, pointwise_smul_def] at hn, refine λ x, (mem_map_iff_mem (show function.injective (mul_aut.conj (↑n * g)).to_monoid_hom, from (mul_aut.conj (↑n * g)).injective)).symm.trans _, rw [map_map, ←(congr_arg (map N.subtype) hn), map_map], refl, end end infinite_sylow open equiv equiv.perm finset function list quotient_group open_locale big_operators universes u v w variables {G : Type u} {α : Type v} {β : Type w} [group G] local attribute [instance, priority 10] subtype.fintype set_fintype classical.prop_decidable lemma quotient_group.card_preimage_mk [fintype G] (s : subgroup G) (t : set (G ⧸ s)) : fintype.card (quotient_group.mk ⁻¹' t) = fintype.card s * fintype.card t := by rw [← fintype.card_prod, fintype.card_congr (preimage_mk_equiv_subgroup_times_set _ _)] namespace sylow open subgroup submonoid mul_action lemma mem_fixed_points_mul_left_cosets_iff_mem_normalizer {H : subgroup G} [fintype ((H : set G) : Type u)] {x : G} : (x : G ⧸ H) ∈ fixed_points H (G ⧸ H) ↔ x ∈ normalizer H := ⟨λ hx, have ha : ∀ {y : G ⧸ H}, y ∈ orbit H (x : G ⧸ H) → y = x, from λ _, ((mem_fixed_points' _).1 hx _), inv_mem_iff.1 (@mem_normalizer_fintype _ _ _ _inst_2 _ (λ n (hn : n ∈ H), have (n⁻¹ * x)⁻¹ * x ∈ H := quotient_group.eq.1 (ha (mem_orbit _ ⟨n⁻¹, H.inv_mem hn⟩)), show _ ∈ H, by {rw [mul_inv_rev, inv_inv] at this, convert this, rw inv_inv} )), λ (hx : ∀ (n : G), n ∈ H ↔ x * n * x⁻¹ ∈ H), (mem_fixed_points' _).2 $ λ y, quotient.induction_on' y $ λ y hy, quotient_group.eq.2 (let ⟨⟨b, hb₁⟩, hb₂⟩ := hy in have hb₂ : (b * x)⁻¹ * y ∈ H := quotient_group.eq.1 hb₂, inv_mem_iff.1 $ (hx _).2 $ (mul_mem_cancel_left (inv_mem hb₁)).1 $ by rw hx at hb₂; simpa [mul_inv_rev, mul_assoc] using hb₂)⟩ def fixed_points_mul_left_cosets_equiv_quotient (H : subgroup G) [fintype (H : set G)] : mul_action.fixed_points H (G ⧸ H) ≃ normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := @subtype_quotient_equiv_quotient_subtype G (normalizer H : set G) (id _) (id _) (fixed_points _ _) (λ a, (@mem_fixed_points_mul_left_cosets_iff_mem_normalizer _ _ _ _inst_2 _).symm) (by { intros, rw setoid_has_equiv, simp only [left_rel_apply], refl }) /-- If `H` is a `p`-subgroup of `G`, then the index of `H` inside its normalizer is congruent mod `p` to the index of `H`. -/ lemma card_quotient_normalizer_modeq_card_quotient [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime] {H : subgroup G} (hH : fintype.card H = p ^ n) : card (normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H)) ≡ card (G ⧸ H) [MOD p] := begin rw [← fintype.card_congr (fixed_points_mul_left_cosets_equiv_quotient H)], exact ((is_p_group.of_card hH).card_modeq_card_fixed_points _).symm end /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then the cardinality of the normalizer of `H` is congruent mod `p ^ (n + 1)` to the cardinality of `G`. -/ lemma card_normalizer_modeq_card [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime] {H : subgroup G} (hH : fintype.card H = p ^ n) : card (normalizer H) ≡ card G [MOD p ^ (n + 1)] := have subgroup.comap ((normalizer H).subtype : normalizer H →* G) H ≃ H, from set.bij_on.equiv (normalizer H).subtype ⟨λ _, id, λ _ _ _ _ h, subtype.val_injective h, λ x hx, ⟨⟨x, le_normalizer hx⟩, hx, rfl⟩⟩, begin rw [card_eq_card_quotient_mul_card_subgroup H, card_eq_card_quotient_mul_card_subgroup (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H), fintype.card_congr this, hH, pow_succ], exact (card_quotient_normalizer_modeq_card_quotient hH).mul_right' _ end /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup, then `p` divides the index of `H` inside its normalizer. -/ lemma prime_dvd_card_quotient_normalizer [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime] (hdvd : p ^ (n + 1) ∣ card G) {H : subgroup G} (hH : fintype.card H = p ^ n) : p ∣ card (normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H)) := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd in have hcard : card (G ⧸ H) = s * p := (nat.mul_left_inj (show card H > 0, from fintype.card_pos_iff.2 ⟨⟨1, H.one_mem⟩⟩)).1 (by rwa [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]), have hm : s * p % p = card (normalizer H ⧸ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H)) % p := hcard ▸ (card_quotient_normalizer_modeq_card_quotient hH).symm, nat.dvd_of_mod_eq_zero (by rwa [nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm) /-- If `H` is a `p`-subgroup but not a Sylow `p`-subgroup of cardinality `p ^ n`, then `p ^ (n + 1)` divides the cardinality of the normalizer of `H`. -/ lemma prime_pow_dvd_card_normalizer [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime] (hdvd : p ^ (n + 1) ∣ card G) {H : subgroup G} (hH : fintype.card H = p ^ n) : p ^ (n + 1) ∣ card (normalizer H) := nat.modeq_zero_iff_dvd.1 ((card_normalizer_modeq_card hH).trans hdvd.modeq_zero_nat) /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ (n + 1)` if `p ^ (n + 1)` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_succ [fintype G] {p : ℕ} {n : ℕ} [hp : fact p.prime] (hdvd : p ^ (n + 1) ∣ card G) {H : subgroup G} (hH : fintype.card H = p ^ n) : ∃ K : subgroup G, fintype.card K = p ^ (n + 1) ∧ H ≤ K := let ⟨s, hs⟩ := exists_eq_mul_left_of_dvd hdvd in have hcard : card (G ⧸ H) = s * p := (nat.mul_left_inj (show card H > 0, from fintype.card_pos_iff.2 ⟨⟨1, H.one_mem⟩⟩)).1 (by rwa [← card_eq_card_quotient_mul_card_subgroup H, hH, hs, pow_succ', mul_assoc, mul_comm p]), have hm : s * p % p = card (normalizer H ⧸ (subgroup.comap (normalizer H).subtype H)) % p := card_congr (fixed_points_mul_left_cosets_equiv_quotient H) ▸ hcard ▸ (is_p_group.of_card hH).card_modeq_card_fixed_points _, have hm' : p ∣ card (normalizer H ⧸ (subgroup.comap (normalizer H).subtype H)) := nat.dvd_of_mod_eq_zero (by rwa [nat.mod_eq_zero_of_dvd (dvd_mul_left _ _), eq_comm] at hm), let ⟨x, hx⟩ := @exists_prime_order_of_dvd_card _ (quotient_group.quotient.group _) _ _ hp hm' in have hequiv : H ≃ (subgroup.comap ((normalizer H).subtype : normalizer H →* G) H) := ⟨λ a, ⟨⟨a.1, le_normalizer a.2⟩, a.2⟩, λ a, ⟨a.1.1, a.2⟩, λ ⟨_, _⟩, rfl, λ ⟨⟨_, _⟩, _⟩, rfl⟩, ⟨subgroup.map ((normalizer H).subtype) (subgroup.comap (quotient_group.mk' (comap H.normalizer.subtype H)) (zpowers x)), begin show card ↥(map H.normalizer.subtype (comap (mk' (comap H.normalizer.subtype H)) (subgroup.zpowers x))) = p ^ (n + 1), suffices : card ↥(subtype.val '' ((subgroup.comap (mk' (comap H.normalizer.subtype H)) (zpowers x)) : set (↥(H.normalizer)))) = p^(n+1), { convert this using 2 }, rw [set.card_image_of_injective (subgroup.comap (mk' (comap H.normalizer.subtype H)) (zpowers x) : set (H.normalizer)) subtype.val_injective, pow_succ', ← hH, fintype.card_congr hequiv, ← hx, order_eq_card_zpowers, ← fintype.card_prod], exact @fintype.card_congr _ _ (id _) (id _) (preimage_mk_equiv_subgroup_times_set _ _) end, begin assume y hy, simp only [exists_prop, subgroup.coe_subtype, mk'_apply, subgroup.mem_map, subgroup.mem_comap], refine ⟨⟨y, le_normalizer hy⟩, ⟨0, _⟩, rfl⟩, rw [zpow_zero, eq_comm, quotient_group.eq_one_iff], simpa using hy end⟩ /-- If `H` is a subgroup of `G` of cardinality `p ^ n`, then `H` is contained in a subgroup of cardinality `p ^ m` if `n ≤ m` and `p ^ m` divides the cardinality of `G` -/ theorem exists_subgroup_card_pow_prime_le [fintype G] (p : ℕ) : ∀ {n m : ℕ} [hp : fact p.prime] (hdvd : p ^ m ∣ card G) (H : subgroup G) (hH : card H = p ^ n) (hnm : n ≤ m), ∃ K : subgroup G, card K = p ^ m ∧ H ≤ K | n m := λ hp hdvd H hH hnm, (lt_or_eq_of_le hnm).elim (λ hnm : n < m, have h0m : 0 < m, from (lt_of_le_of_lt n.zero_le hnm), have wf : m - 1 < m, from nat.sub_lt h0m zero_lt_one, have hnm1 : n ≤ m - 1, from le_tsub_of_add_le_right hnm, let ⟨K, hK⟩ := @exists_subgroup_card_pow_prime_le n (m - 1) hp (nat.pow_dvd_of_le_of_pow_dvd tsub_le_self hdvd) H hH hnm1 in have hdvd' : p ^ ((m - 1) + 1) ∣ card G, by rwa [tsub_add_cancel_of_le h0m.nat_succ_le], let ⟨K', hK'⟩ := @exists_subgroup_card_pow_succ _ _ _ _ _ hp hdvd' K hK.1 in ⟨K', by rw [hK'.1, tsub_add_cancel_of_le h0m.nat_succ_le], le_trans hK.2 hK'.2⟩) (λ hnm : n = m, ⟨H, by simp [hH, hnm]⟩) /-- A generalisation of **Sylow's first theorem**. If `p ^ n` divides the cardinality of `G`, then there is a subgroup of cardinality `p ^ n` -/ theorem exists_subgroup_card_pow_prime [fintype G] (p : ℕ) {n : ℕ} [fact p.prime] (hdvd : p ^ n ∣ card G) : ∃ K : subgroup G, fintype.card K = p ^ n := let ⟨K, hK⟩ := exists_subgroup_card_pow_prime_le p hdvd ⊥ (by simp) n.zero_le in ⟨K, hK.1⟩ lemma pow_dvd_card_of_pow_dvd_card [fintype G] {p n : ℕ} [hp : fact p.prime] (P : sylow p G) (hdvd : p ^ n ∣ card G) : p ^ n ∣ card P := (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_fintype)).symm.dvd_of_dvd_mul_left ((index_mul_card P.1).symm ▸ hdvd) lemma dvd_card_of_dvd_card [fintype G] {p : ℕ} [fact p.prime] (P : sylow p G) (hdvd : p ∣ card G) : p ∣ card P := begin rw ← pow_one p at hdvd, have key := P.pow_dvd_card_of_pow_dvd_card hdvd, rwa pow_one at key, end /-- Sylow subgroups are Hall subgroups. -/ lemma card_coprime_index [fintype G] {p : ℕ} [hp : fact p.prime] (P : sylow p G) : (card P).coprime (index (P : subgroup G)) := let ⟨n, hn⟩ := is_p_group.iff_card.mp P.2 in hn.symm ▸ (hp.1.coprime_pow_of_not_dvd (not_dvd_index_sylow P index_ne_zero_of_fintype)).symm lemma ne_bot_of_dvd_card [fintype G] {p : ℕ} [hp : fact p.prime] (P : sylow p G) (hdvd : p ∣ card G) : (P : subgroup G) ≠ ⊥ := begin refine λ h, hp.out.not_dvd_one _, have key : p ∣ card (P : subgroup G) := P.dvd_card_of_dvd_card hdvd, rwa [h, card_bot] at key, end /-- The cardinality of a Sylow group is `p ^ n` where `n` is the multiplicity of `p` in the group order. -/ lemma card_eq_multiplicity [fintype G] {p : ℕ} [hp : fact p.prime] (P : sylow p G) : card P = p ^ nat.factorization (card G) p := begin obtain ⟨n, heq : card P = _⟩ := is_p_group.iff_card.mp (P.is_p_group'), refine nat.dvd_antisymm _ (P.pow_dvd_card_of_pow_dvd_card (nat.pow_factorization_dvd _ p)), rw [heq, ←hp.out.pow_dvd_iff_dvd_pow_factorization (show card G ≠ 0, from card_ne_zero), ←heq], exact P.1.card_subgroup_dvd_card, end lemma subsingleton_of_normal {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) (h : (P : subgroup G).normal) : subsingleton (sylow p G) := begin apply subsingleton.intro, intros Q R, obtain ⟨x, h1⟩ := exists_smul_eq G P Q, obtain ⟨x, h2⟩ := exists_smul_eq G P R, rw sylow.smul_eq_of_normal at h1 h2, rw [← h1, ← h2], end section pointwise open_locale pointwise lemma characteristic_of_normal {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) (h : (P : subgroup G).normal) : (P : subgroup G).characteristic := begin haveI := sylow.subsingleton_of_normal P h, rw characteristic_iff_map_eq, intros Φ, show (Φ • P).to_subgroup = P.to_subgroup, congr, end end pointwise lemma normal_of_normalizer_normal {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) (hn : (↑P : subgroup G).normalizer.normal) : (↑P : subgroup G).normal := by rw [←normalizer_eq_top, ←normalizer_sup_eq_top (P.subtype le_normalizer), coe_subtype, map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))), sup_idem] @[simp] lemma normalizer_normalizer {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : (↑P : subgroup G).normalizer.normalizer = (↑P : subgroup G).normalizer := begin have := normal_of_normalizer_normal (P.subtype (le_normalizer.trans le_normalizer)), simp_rw [←normalizer_eq_top, coe_subtype, ←comap_subtype_normalizer_eq le_normalizer, ←comap_subtype_normalizer_eq le_rfl, comap_subtype_self_eq_top] at this, rw [←subtype_range (P : subgroup G).normalizer.normalizer, monoid_hom.range_eq_map, ←this rfl], exact map_comap_eq_self (le_normalizer.trans (ge_of_eq (subtype_range _))), end lemma normal_of_all_max_subgroups_normal [fintype G] (hnc : ∀ (H : subgroup G), is_coatom H → H.normal) {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : (↑P : subgroup G).normal := normalizer_eq_top.mp begin rcases eq_top_or_exists_le_coatom ((↑P : subgroup G).normalizer) with heq | ⟨K, hK, hNK⟩, { exact heq }, { haveI := hnc _ hK, have hPK := le_trans le_normalizer hNK, let P' := P.subtype hPK, exfalso, apply hK.1, calc K = (↑P : subgroup G).normalizer ⊔ K : by { rw sup_eq_right.mpr, exact hNK } ... = (map K.subtype (↑P' : subgroup K)).normalizer ⊔ K : by simp [map_comap_eq_self, hPK] ... = ⊤ : normalizer_sup_eq_top P' }, end lemma normal_of_normalizer_condition (hnc : normalizer_condition G) {p : ℕ} [fact p.prime] [fintype (sylow p G)] (P : sylow p G) : (↑P : subgroup G).normal := normalizer_eq_top.mp $ normalizer_condition_iff_only_full_group_self_normalizing.mp hnc _ $ normalizer_normalizer _ open_locale big_operators /-- If all its sylow groups are normal, then a finite group is isomorphic to the direct product of these sylow groups. -/ noncomputable def direct_product_of_normal [fintype G] (hn : ∀ {p : ℕ} [fact p.prime] (P : sylow p G), (↑P : subgroup G).normal) : (Π p : (card G).factorization.support, Π P : sylow p G, (↑P : subgroup G)) ≃* G := begin set ps := (fintype.card G).factorization.support, -- “The” sylow group for p let P : Π p, sylow p G := default, have hcomm : pairwise (λ (p₁ p₂ : ps), ∀ (x y : G), x ∈ P p₁ → y ∈ P p₂ → commute x y), { rintros ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne, haveI hp₁' := fact.mk (nat.prime_of_mem_factorization hp₁), haveI hp₂' := fact.mk (nat.prime_of_mem_factorization hp₂), have hne' : p₁ ≠ p₂, by simpa using hne, apply subgroup.commute_of_normal_of_disjoint _ _ (hn (P p₁)) (hn (P p₂)), apply is_p_group.disjoint_of_ne p₁ p₂ hne' _ _ (P p₁).is_p_group' (P p₂).is_p_group', }, refine mul_equiv.trans _ _, -- There is only one sylow group for each p, so the inner product is trivial show (Π p : ps, Π P : sylow p G, P) ≃* (Π p : ps, P p), { -- here we need to help the elaborator with an explicit instantiation apply @mul_equiv.Pi_congr_right ps (λ p, (Π P : sylow p G, P)) (λ p, P p) _ _ , rintro ⟨p, hp⟩, haveI hp' := fact.mk (nat.prime_of_mem_factorization hp), haveI := subsingleton_of_normal _ (hn (P p)), change (Π (P : sylow p G), P) ≃* P p, exact mul_equiv.Pi_subsingleton _ _, }, show (Π p : ps, P p) ≃* G, apply mul_equiv.of_bijective (subgroup.noncomm_pi_coprod hcomm), apply (bijective_iff_injective_and_card _).mpr, split, show injective _, { apply subgroup.injective_noncomm_pi_coprod_of_independent, apply independent_of_coprime_order hcomm, rintros ⟨p₁, hp₁⟩ ⟨p₂, hp₂⟩ hne, haveI hp₁' := fact.mk (nat.prime_of_mem_factorization hp₁), haveI hp₂' := fact.mk (nat.prime_of_mem_factorization hp₂), have hne' : p₁ ≠ p₂, by simpa using hne, apply is_p_group.coprime_card_of_ne p₁ p₂ hne' _ _ (P p₁).is_p_group' (P p₂).is_p_group', }, show card (Π (p : ps), P p) = card G, { calc card (Π (p : ps), P p) = ∏ (p : ps), card ↥(P p) : fintype.card_pi ... = ∏ (p : ps), p.1 ^ (card G).factorization p.1 : begin congr' 1 with ⟨p, hp⟩, exact @card_eq_multiplicity _ _ _ p ⟨nat.prime_of_mem_factorization hp⟩ (P p) end ... = ∏ p in ps, p ^ (card G).factorization p : finset.prod_finset_coe (λ p, p ^ (card G).factorization p) _ ... = (card G).factorization.prod pow : rfl ... = card G : nat.factorization_prod_pow_eq_self fintype.card_ne_zero } end end sylow