/- Copyright (c) 2019 Johan Commelin. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johan Commelin, Simon Hudon, Scott Morrison -/ import control.bifunctor import logic.equiv.basic /-! # Functor and bifunctors can be applied to `equiv`s. We define ```lean def functor.map_equiv (f : Type u → Type v) [functor f] [is_lawful_functor f] : α ≃ β → f α ≃ f β ``` and ```lean def bifunctor.map_equiv (F : Type u → Type v → Type w) [bifunctor F] [is_lawful_bifunctor F] : α ≃ β → α' ≃ β' → F α α' ≃ F β β' ``` -/ universes u v w variables {α β : Type u} open equiv namespace functor variables (f : Type u → Type v) [functor f] [is_lawful_functor f] /-- Apply a functor to an `equiv`. -/ def map_equiv (h : α ≃ β) : f α ≃ f β := { to_fun := map h, inv_fun := map h.symm, left_inv := λ x, by simp [map_map], right_inv := λ x, by simp [map_map] } @[simp] lemma map_equiv_apply (h : α ≃ β) (x : f α) : (map_equiv f h : f α ≃ f β) x = map h x := rfl @[simp] lemma map_equiv_symm_apply (h : α ≃ β) (y : f β) : (map_equiv f h : f α ≃ f β).symm y = map h.symm y := rfl @[simp] lemma map_equiv_refl : map_equiv f (equiv.refl α) = equiv.refl (f α) := begin ext x, simp only [map_equiv_apply, refl_apply], exact is_lawful_functor.id_map x, end end functor namespace bifunctor variables {α' β' : Type v} (F : Type u → Type v → Type w) [bifunctor F] [is_lawful_bifunctor F] /-- Apply a bifunctor to a pair of `equiv`s. -/ def map_equiv (h : α ≃ β) (h' : α' ≃ β') : F α α' ≃ F β β' := { to_fun := bimap h h', inv_fun := bimap h.symm h'.symm, left_inv := λ x, by simp [bimap_bimap, id_bimap], right_inv := λ x, by simp [bimap_bimap, id_bimap] } @[simp] lemma map_equiv_apply (h : α ≃ β) (h' : α' ≃ β') (x : F α α') : (map_equiv F h h' : F α α' ≃ F β β') x = bimap h h' x := rfl @[simp] lemma map_equiv_symm_apply (h : α ≃ β) (h' : α' ≃ β') (y : F β β') : (map_equiv F h h' : F α α' ≃ F β β').symm y = bimap h.symm h'.symm y := rfl @[simp] lemma map_equiv_refl_refl : map_equiv F (equiv.refl α) (equiv.refl α') = equiv.refl (F α α') := begin ext x, simp [id_bimap] end end bifunctor