/- Copyright (c) 2021 Eric Wieser. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Eric Wieser -/ import control.equiv_functor import logic.equiv.basic /-! # Equivalences for `option α` We define * `equiv.option_congr`: the `option α ≃ option β` constructed from `e : α ≃ β` by sending `none` to `none`, and applying a `e` elsewhere. * `equiv.remove_none`: the `α ≃ β` constructed from `option α ≃ option β` by removing `none` from both sides. -/ namespace equiv variables {α β γ : Type*} section option_congr /-- A universe-polymorphic version of `equiv_functor.map_equiv option e`. -/ @[simps apply] def option_congr (e : α ≃ β) : option α ≃ option β := { to_fun := option.map e, inv_fun := option.map e.symm, left_inv := λ x, (option.map_map _ _ _).trans $ e.symm_comp_self.symm ▸ congr_fun option.map_id x, right_inv := λ x, (option.map_map _ _ _).trans $ e.self_comp_symm.symm ▸ congr_fun option.map_id x } @[simp] lemma option_congr_refl : option_congr (equiv.refl α) = equiv.refl _ := ext $ congr_fun option.map_id @[simp] lemma option_congr_symm (e : α ≃ β) : (option_congr e).symm = option_congr e.symm := rfl @[simp] lemma option_congr_trans (e₁ : α ≃ β) (e₂ : β ≃ γ) : (option_congr e₁).trans (option_congr e₂) = option_congr (e₁.trans e₂) := ext $ option.map_map _ _ /-- When `α` and `β` are in the same universe, this is the same as the result of `equiv_functor.map_equiv`. -/ lemma option_congr_eq_equiv_function_map_equiv {α β : Type*} (e : α ≃ β) : option_congr e = equiv_functor.map_equiv option e := rfl end option_congr section remove_none variables (e : option α ≃ option β) private def remove_none_aux (x : α) : β := if h : (e (some x)).is_some then option.get h else option.get $ show (e none).is_some, from begin rw ←option.ne_none_iff_is_some, intro hn, rw [option.not_is_some_iff_eq_none, ←hn] at h, simpa only using e.injective h, end private lemma remove_none_aux_some {x : α} (h : ∃ x', e (some x) = some x') : some (remove_none_aux e x) = e (some x) := by simp [remove_none_aux, option.is_some_iff_exists.mpr h] private lemma remove_none_aux_none {x : α} (h : e (some x) = none) : some (remove_none_aux e x) = e none := by simp [remove_none_aux, option.not_is_some_iff_eq_none.mpr h] private lemma remove_none_aux_inv (x : α) : remove_none_aux e.symm (remove_none_aux e x) = x := option.some_injective _ begin cases h1 : e.symm (some (remove_none_aux e x)); cases h2 : (e (some x)), { rw remove_none_aux_none _ h1, exact (e.eq_symm_apply.mpr h2).symm }, { rw remove_none_aux_some _ ⟨_, h2⟩ at h1, simpa using h1, }, { rw remove_none_aux_none _ h2 at h1, simpa using h1, }, { rw remove_none_aux_some _ ⟨_, h1⟩, rw remove_none_aux_some _ ⟨_, h2⟩, simp }, end /-- Given an equivalence between two `option` types, eliminate `none` from that equivalence by mapping `e.symm none` to `e none`. -/ def remove_none : α ≃ β := { to_fun := remove_none_aux e, inv_fun := remove_none_aux e.symm, left_inv := remove_none_aux_inv e, right_inv := remove_none_aux_inv e.symm, } @[simp] lemma remove_none_symm : (remove_none e).symm = remove_none e.symm := rfl lemma remove_none_some {x : α} (h : ∃ x', e (some x) = some x') : some (remove_none e x) = e (some x) := remove_none_aux_some e h lemma remove_none_none {x : α} (h : e (some x) = none) : some (remove_none e x) = e none := remove_none_aux_none e h @[simp] lemma option_symm_apply_none_iff : e.symm none = none ↔ e none = none := ⟨λ h, by simpa using (congr_arg e h).symm, λ h, by simpa using (congr_arg e.symm h).symm⟩ lemma some_remove_none_iff {x : α} : some (remove_none e x) = e none ↔ e.symm none = some x := begin cases h : e (some x) with a, { rw remove_none_none _ h, simpa using (congr_arg e.symm h).symm }, { rw remove_none_some _ ⟨a, h⟩, have := (congr_arg e.symm h), rw [symm_apply_apply] at this, simp only [false_iff, apply_eq_iff_eq], simp [this] } end @[simp] lemma remove_none_option_congr (e : α ≃ β) : remove_none e.option_congr = e := equiv.ext $ λ x, option.some_injective _ $ remove_none_some _ ⟨e x, by simp [equiv_functor.map]⟩ end remove_none lemma option_congr_injective : function.injective (option_congr : α ≃ β → option α ≃ option β) := function.left_inverse.injective remove_none_option_congr end equiv