/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Mario Carneiro -/ import data.set.function import logic.equiv.basic /-! # Equivalences and sets In this file we provide lemmas linking equivalences to sets. Some notable definitions are: * `equiv.of_injective`: an injective function is (noncomputably) equivalent to its range. * `equiv.set_congr`: two equal sets are equivalent as types. * `equiv.set.union`: a disjoint union of sets is equivalent to their `sum`. This file is separate from `equiv/basic` such that we do not require the full lattice structure on sets before defining what an equivalence is. -/ open function set universes u v w z variables {α : Sort u} {β : Sort v} {γ : Sort w} namespace equiv @[simp] lemma range_eq_univ {α : Type*} {β : Type*} (e : α ≃ β) : range e = univ := eq_univ_of_forall e.surjective protected lemma image_eq_preimage {α β} (e : α ≃ β) (s : set α) : e '' s = e.symm ⁻¹' s := set.ext $ λ x, mem_image_iff_of_inverse e.left_inv e.right_inv lemma _root_.set.mem_image_equiv {α β} {S : set α} {f : α ≃ β} {x : β} : x ∈ f '' S ↔ f.symm x ∈ S := set.ext_iff.mp (f.image_eq_preimage S) x /-- Alias for `equiv.image_eq_preimage` -/ lemma _root_.set.image_equiv_eq_preimage_symm {α β} (S : set α) (f : α ≃ β) : f '' S = f.symm ⁻¹' S := f.image_eq_preimage S /-- Alias for `equiv.image_eq_preimage` -/ lemma _root_.set.preimage_equiv_eq_image_symm {α β} (S : set α) (f : β ≃ α) : f ⁻¹' S = f.symm '' S := (f.symm.image_eq_preimage S).symm @[simp] protected lemma subset_image {α β} (e : α ≃ β) (s : set α) (t : set β) : e.symm '' t ⊆ s ↔ t ⊆ e '' s := by rw [image_subset_iff, e.image_eq_preimage] @[simp] protected lemma subset_image' {α β} (e : α ≃ β) (s : set α) (t : set β) : s ⊆ e.symm '' t ↔ e '' s ⊆ t := calc s ⊆ e.symm '' t ↔ e.symm.symm '' s ⊆ t : by rw e.symm.subset_image ... ↔ e '' s ⊆ t : by rw e.symm_symm @[simp] lemma symm_image_image {α β} (e : α ≃ β) (s : set α) : e.symm '' (e '' s) = s := e.left_inverse_symm.image_image s lemma eq_image_iff_symm_image_eq {α β} (e : α ≃ β) (s : set α) (t : set β) : t = e '' s ↔ e.symm '' t = s := (e.symm.injective.image_injective.eq_iff' (e.symm_image_image s)).symm @[simp] lemma image_symm_image {α β} (e : α ≃ β) (s : set β) : e '' (e.symm '' s) = s := e.symm.symm_image_image s @[simp] lemma image_preimage {α β} (e : α ≃ β) (s : set β) : e '' (e ⁻¹' s) = s := e.surjective.image_preimage s @[simp] lemma preimage_image {α β} (e : α ≃ β) (s : set α) : e ⁻¹' (e '' s) = s := e.injective.preimage_image s protected lemma image_compl {α β} (f : equiv α β) (s : set α) : f '' sᶜ = (f '' s)ᶜ := image_compl_eq f.bijective @[simp] lemma symm_preimage_preimage {α β} (e : α ≃ β) (s : set β) : e.symm ⁻¹' (e ⁻¹' s) = s := e.right_inverse_symm.preimage_preimage s @[simp] lemma preimage_symm_preimage {α β} (e : α ≃ β) (s : set α) : e ⁻¹' (e.symm ⁻¹' s) = s := e.left_inverse_symm.preimage_preimage s @[simp] lemma preimage_subset {α β} (e : α ≃ β) (s t : set β) : e ⁻¹' s ⊆ e ⁻¹' t ↔ s ⊆ t := e.surjective.preimage_subset_preimage_iff @[simp] lemma image_subset {α β} (e : α ≃ β) (s t : set α) : e '' s ⊆ e '' t ↔ s ⊆ t := image_subset_image_iff e.injective @[simp] lemma image_eq_iff_eq {α β} (e : α ≃ β) (s t : set α) : e '' s = e '' t ↔ s = t := image_eq_image e.injective lemma preimage_eq_iff_eq_image {α β} (e : α ≃ β) (s t) : e ⁻¹' s = t ↔ s = e '' t := preimage_eq_iff_eq_image e.bijective lemma eq_preimage_iff_image_eq {α β} (e : α ≃ β) (s t) : s = e ⁻¹' t ↔ e '' s = t := eq_preimage_iff_image_eq e.bijective @[simp] lemma prod_comm_preimage {α β} {s : set α} {t : set β} : equiv.prod_comm α β ⁻¹' t ×ˢ s = s ×ˢ t := preimage_swap_prod lemma prod_comm_image {α β} {s : set α} {t : set β} : equiv.prod_comm α β '' s ×ˢ t = t ×ˢ s := image_swap_prod @[simp] lemma prod_assoc_preimage {α β γ} {s : set α} {t : set β} {u : set γ} : equiv.prod_assoc α β γ ⁻¹' s ×ˢ (t ×ˢ u) = (s ×ˢ t) ×ˢ u := by { ext, simp [and_assoc] } @[simp] lemma prod_assoc_symm_preimage {α β γ} {s : set α} {t : set β} {u : set γ} : (equiv.prod_assoc α β γ).symm ⁻¹' (s ×ˢ t) ×ˢ u = s ×ˢ (t ×ˢ u) := by { ext, simp [and_assoc] } -- `@[simp]` doesn't like these lemmas, as it uses `set.image_congr'` to turn `equiv.prod_assoc` -- into a lambda expression and then unfold it. lemma prod_assoc_image {α β γ} {s : set α} {t : set β} {u : set γ} : equiv.prod_assoc α β γ '' (s ×ˢ t) ×ˢ u = s ×ˢ (t ×ˢ u) := by simpa only [equiv.image_eq_preimage] using prod_assoc_symm_preimage lemma prod_assoc_symm_image {α β γ} {s : set α} {t : set β} {u : set γ} : (equiv.prod_assoc α β γ).symm '' s ×ˢ (t ×ˢ u) = (s ×ˢ t) ×ˢ u := by simpa only [equiv.image_eq_preimage] using prod_assoc_preimage /-- A set `s` in `α × β` is equivalent to the sigma-type `Σ x, {y | (x, y) ∈ s}`. -/ def set_prod_equiv_sigma {α β : Type*} (s : set (α × β)) : s ≃ Σ x : α, {y | (x, y) ∈ s} := { to_fun := λ x, ⟨x.1.1, x.1.2, by simp⟩, inv_fun := λ x, ⟨(x.1, x.2.1), x.2.2⟩, left_inv := λ ⟨⟨x, y⟩, h⟩, rfl, right_inv := λ ⟨x, y, h⟩, rfl } /-- The subtypes corresponding to equal sets are equivalent. -/ @[simps apply] def set_congr {α : Type*} {s t : set α} (h : s = t) : s ≃ t := subtype_equiv_prop h /-- A set is equivalent to its image under an equivalence. -/ -- We could construct this using `equiv.set.image e s e.injective`, -- but this definition provides an explicit inverse. @[simps] def image {α β : Type*} (e : α ≃ β) (s : set α) : s ≃ e '' s := { to_fun := λ x, ⟨e x.1, by simp⟩, inv_fun := λ y, ⟨e.symm y.1, by { rcases y with ⟨-, ⟨a, ⟨m, rfl⟩⟩⟩, simpa using m, }⟩, left_inv := λ x, by simp, right_inv := λ y, by simp, }. namespace set /-- `univ α` is equivalent to `α`. -/ @[simps apply symm_apply] protected def univ (α) : @univ α ≃ α := ⟨coe, λ a, ⟨a, trivial⟩, λ ⟨a, _⟩, rfl, λ a, rfl⟩ /-- An empty set is equivalent to the `empty` type. -/ protected def empty (α) : (∅ : set α) ≃ empty := equiv_empty _ /-- An empty set is equivalent to a `pempty` type. -/ protected def pempty (α) : (∅ : set α) ≃ pempty := equiv_pempty _ /-- If sets `s` and `t` are separated by a decidable predicate, then `s ∪ t` is equivalent to `s ⊕ t`. -/ protected def union' {α} {s t : set α} (p : α → Prop) [decidable_pred p] (hs : ∀ x ∈ s, p x) (ht : ∀ x ∈ t, ¬ p x) : (s ∪ t : set α) ≃ s ⊕ t := { to_fun := λ x, if hp : p x then sum.inl ⟨_, x.2.resolve_right (λ xt, ht _ xt hp)⟩ else sum.inr ⟨_, x.2.resolve_left (λ xs, hp (hs _ xs))⟩, inv_fun := λ o, match o with | (sum.inl x) := ⟨x, or.inl x.2⟩ | (sum.inr x) := ⟨x, or.inr x.2⟩ end, left_inv := λ ⟨x, h'⟩, by by_cases p x; simp [union'._match_1, h]; congr, right_inv := λ o, begin rcases o with ⟨x, h⟩ | ⟨x, h⟩; dsimp [union'._match_1]; [simp [hs _ h], simp [ht _ h]] end } /-- If sets `s` and `t` are disjoint, then `s ∪ t` is equivalent to `s ⊕ t`. -/ protected def union {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅) : (s ∪ t : set α) ≃ s ⊕ t := set.union' (λ x, x ∈ s) (λ _, id) (λ x xt xs, H ⟨xs, xt⟩) lemma union_apply_left {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅) {a : (s ∪ t : set α)} (ha : ↑a ∈ s) : equiv.set.union H a = sum.inl ⟨a, ha⟩ := dif_pos ha lemma union_apply_right {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅) {a : (s ∪ t : set α)} (ha : ↑a ∈ t) : equiv.set.union H a = sum.inr ⟨a, ha⟩ := dif_neg $ λ h, H ⟨h, ha⟩ @[simp] lemma union_symm_apply_left {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅) (a : s) : (equiv.set.union H).symm (sum.inl a) = ⟨a, subset_union_left _ _ a.2⟩ := rfl @[simp] lemma union_symm_apply_right {α} {s t : set α} [decidable_pred (λ x, x ∈ s)] (H : s ∩ t ⊆ ∅) (a : t) : (equiv.set.union H).symm (sum.inr a) = ⟨a, subset_union_right _ _ a.2⟩ := rfl /-- A singleton set is equivalent to a `punit` type. -/ protected def singleton {α} (a : α) : ({a} : set α) ≃ punit.{u} := ⟨λ _, punit.star, λ _, ⟨a, mem_singleton _⟩, λ ⟨x, h⟩, by { simp at h, subst x }, λ ⟨⟩, rfl⟩ /-- Equal sets are equivalent. TODO: this is the same as `equiv.set_congr`! -/ @[simps apply symm_apply] protected def of_eq {α : Type u} {s t : set α} (h : s = t) : s ≃ t := equiv.set_congr h /-- If `a ∉ s`, then `insert a s` is equivalent to `s ⊕ punit`. -/ protected def insert {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s) : (insert a s : set α) ≃ s ⊕ punit.{u+1} := calc (insert a s : set α) ≃ ↥(s ∪ {a}) : equiv.set.of_eq (by simp) ... ≃ s ⊕ ({a} : set α) : equiv.set.union (λ x ⟨hx, hx'⟩, by simp [*] at *) ... ≃ s ⊕ punit.{u+1} : sum_congr (equiv.refl _) (equiv.set.singleton _) @[simp] lemma insert_symm_apply_inl {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s) (b : s) : (equiv.set.insert H).symm (sum.inl b) = ⟨b, or.inr b.2⟩ := rfl @[simp] lemma insert_symm_apply_inr {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s) (b : punit.{u+1}) : (equiv.set.insert H).symm (sum.inr b) = ⟨a, or.inl rfl⟩ := rfl @[simp] lemma insert_apply_left {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s) : equiv.set.insert H ⟨a, or.inl rfl⟩ = sum.inr punit.star := (equiv.set.insert H).apply_eq_iff_eq_symm_apply.2 rfl @[simp] lemma insert_apply_right {α} {s : set.{u} α} [decidable_pred (∈ s)] {a : α} (H : a ∉ s) (b : s) : equiv.set.insert H ⟨b, or.inr b.2⟩ = sum.inl b := (equiv.set.insert H).apply_eq_iff_eq_symm_apply.2 rfl /-- If `s : set α` is a set with decidable membership, then `s ⊕ sᶜ` is equivalent to `α`. -/ protected def sum_compl {α} (s : set α) [decidable_pred (∈ s)] : s ⊕ (sᶜ : set α) ≃ α := calc s ⊕ (sᶜ : set α) ≃ ↥(s ∪ sᶜ) : (equiv.set.union (by simp [set.ext_iff])).symm ... ≃ @univ α : equiv.set.of_eq (by simp) ... ≃ α : equiv.set.univ _ @[simp] lemma sum_compl_apply_inl {α : Type u} (s : set α) [decidable_pred (∈ s)] (x : s) : equiv.set.sum_compl s (sum.inl x) = x := rfl @[simp] lemma sum_compl_apply_inr {α : Type u} (s : set α) [decidable_pred (∈ s)] (x : sᶜ) : equiv.set.sum_compl s (sum.inr x) = x := rfl lemma sum_compl_symm_apply_of_mem {α : Type u} {s : set α} [decidable_pred (∈ s)] {x : α} (hx : x ∈ s) : (equiv.set.sum_compl s).symm x = sum.inl ⟨x, hx⟩ := have ↑(⟨x, or.inl hx⟩ : (s ∪ sᶜ : set α)) ∈ s, from hx, by { rw [equiv.set.sum_compl], simpa using set.union_apply_left _ this } lemma sum_compl_symm_apply_of_not_mem {α : Type u} {s : set α} [decidable_pred (∈ s)] {x : α} (hx : x ∉ s) : (equiv.set.sum_compl s).symm x = sum.inr ⟨x, hx⟩ := have ↑(⟨x, or.inr hx⟩ : (s ∪ sᶜ : set α)) ∈ sᶜ, from hx, by { rw [equiv.set.sum_compl], simpa using set.union_apply_right _ this } @[simp] lemma sum_compl_symm_apply {α : Type*} {s : set α} [decidable_pred (∈ s)] {x : s} : (equiv.set.sum_compl s).symm x = sum.inl x := by cases x with x hx; exact set.sum_compl_symm_apply_of_mem hx @[simp] lemma sum_compl_symm_apply_compl {α : Type*} {s : set α} [decidable_pred (∈ s)] {x : sᶜ} : (equiv.set.sum_compl s).symm x = sum.inr x := by cases x with x hx; exact set.sum_compl_symm_apply_of_not_mem hx /-- `sum_diff_subset s t` is the natural equivalence between `s ⊕ (t \ s)` and `t`, where `s` and `t` are two sets. -/ protected def sum_diff_subset {α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] : s ⊕ (t \ s : set α) ≃ t := calc s ⊕ (t \ s : set α) ≃ (s ∪ (t \ s) : set α) : (equiv.set.union (by simp [inter_diff_self])).symm ... ≃ t : equiv.set.of_eq (by { simp [union_diff_self, union_eq_self_of_subset_left h] }) @[simp] lemma sum_diff_subset_apply_inl {α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] (x : s) : equiv.set.sum_diff_subset h (sum.inl x) = inclusion h x := rfl @[simp] lemma sum_diff_subset_apply_inr {α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] (x : t \ s) : equiv.set.sum_diff_subset h (sum.inr x) = inclusion (diff_subset t s) x := rfl lemma sum_diff_subset_symm_apply_of_mem {α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] {x : t} (hx : x.1 ∈ s) : (equiv.set.sum_diff_subset h).symm x = sum.inl ⟨x, hx⟩ := begin apply (equiv.set.sum_diff_subset h).injective, simp only [apply_symm_apply, sum_diff_subset_apply_inl], exact subtype.eq rfl, end lemma sum_diff_subset_symm_apply_of_not_mem {α} {s t : set α} (h : s ⊆ t) [decidable_pred (∈ s)] {x : t} (hx : x.1 ∉ s) : (equiv.set.sum_diff_subset h).symm x = sum.inr ⟨x, ⟨x.2, hx⟩⟩ := begin apply (equiv.set.sum_diff_subset h).injective, simp only [apply_symm_apply, sum_diff_subset_apply_inr], exact subtype.eq rfl, end /-- If `s` is a set with decidable membership, then the sum of `s ∪ t` and `s ∩ t` is equivalent to `s ⊕ t`. -/ protected def union_sum_inter {α : Type u} (s t : set α) [decidable_pred (∈ s)] : (s ∪ t : set α) ⊕ (s ∩ t : set α) ≃ s ⊕ t := calc (s ∪ t : set α) ⊕ (s ∩ t : set α) ≃ (s ∪ t \ s : set α) ⊕ (s ∩ t : set α) : by rw [union_diff_self] ... ≃ (s ⊕ (t \ s : set α)) ⊕ (s ∩ t : set α) : sum_congr (set.union $ subset_empty_iff.2 (inter_diff_self _ _)) (equiv.refl _) ... ≃ s ⊕ (t \ s : set α) ⊕ (s ∩ t : set α) : sum_assoc _ _ _ ... ≃ s ⊕ (t \ s ∪ s ∩ t : set α) : sum_congr (equiv.refl _) begin refine (set.union' (∉ s) _ _).symm, exacts [λ x hx, hx.2, λ x hx, not_not_intro hx.1] end ... ≃ s ⊕ t : by { rw (_ : t \ s ∪ s ∩ t = t), rw [union_comm, inter_comm, inter_union_diff] } /-- Given an equivalence `e₀` between sets `s : set α` and `t : set β`, the set of equivalences `e : α ≃ β` such that `e ↑x = ↑(e₀ x)` for each `x : s` is equivalent to the set of equivalences between `sᶜ` and `tᶜ`. -/ protected def compl {α : Type u} {β : Type v} {s : set α} {t : set β} [decidable_pred (∈ s)] [decidable_pred (∈ t)] (e₀ : s ≃ t) : {e : α ≃ β // ∀ x : s, e x = e₀ x} ≃ ((sᶜ : set α) ≃ (tᶜ : set β)) := { to_fun := λ e, subtype_equiv e (λ a, not_congr $ iff.symm $ maps_to.mem_iff (maps_to_iff_exists_map_subtype.2 ⟨e₀, e.2⟩) (surj_on.maps_to_compl (surj_on_iff_exists_map_subtype.2 ⟨t, e₀, subset.refl t, e₀.surjective, e.2⟩) e.1.injective)), inv_fun := λ e₁, subtype.mk (calc α ≃ s ⊕ (sᶜ : set α) : (set.sum_compl s).symm ... ≃ t ⊕ (tᶜ : set β) : e₀.sum_congr e₁ ... ≃ β : set.sum_compl t) (λ x, by simp only [sum.map_inl, trans_apply, sum_congr_apply, set.sum_compl_apply_inl, set.sum_compl_symm_apply]), left_inv := λ e, begin ext x, by_cases hx : x ∈ s, { simp only [set.sum_compl_symm_apply_of_mem hx, ←e.prop ⟨x, hx⟩, sum.map_inl, sum_congr_apply, trans_apply, subtype.coe_mk, set.sum_compl_apply_inl] }, { simp only [set.sum_compl_symm_apply_of_not_mem hx, sum.map_inr, subtype_equiv_apply, set.sum_compl_apply_inr, trans_apply, sum_congr_apply, subtype.coe_mk] }, end, right_inv := λ e, equiv.ext $ λ x, by simp only [sum.map_inr, subtype_equiv_apply, set.sum_compl_apply_inr, function.comp_app, sum_congr_apply, equiv.coe_trans, subtype.coe_eta, subtype.coe_mk, set.sum_compl_symm_apply_compl] } /-- The set product of two sets is equivalent to the type product of their coercions to types. -/ protected def prod {α β} (s : set α) (t : set β) : ↥(s ×ˢ t) ≃ s × t := @subtype_prod_equiv_prod α β s t /-- The set `set.pi set.univ s` is equivalent to `Π a, s a`. -/ @[simps] protected def univ_pi {α : Type*} {β : α → Type*} (s : Π a, set (β a)) : pi univ s ≃ Π a, s a := { to_fun := λ f a, ⟨(f : Π a, β a) a, f.2 a (mem_univ a)⟩, inv_fun := λ f, ⟨λ a, f a, λ a ha, (f a).2⟩, left_inv := λ ⟨f, hf⟩, by { ext a, refl }, right_inv := λ f, by { ext a, refl } } /-- If a function `f` is injective on a set `s`, then `s` is equivalent to `f '' s`. -/ protected noncomputable def image_of_inj_on {α β} (f : α → β) (s : set α) (H : inj_on f s) : s ≃ (f '' s) := ⟨λ p, ⟨f p, mem_image_of_mem f p.2⟩, λ p, ⟨classical.some p.2, (classical.some_spec p.2).1⟩, λ ⟨x, h⟩, subtype.eq (H (classical.some_spec (mem_image_of_mem f h)).1 h (classical.some_spec (mem_image_of_mem f h)).2), λ ⟨y, h⟩, subtype.eq (classical.some_spec h).2⟩ /-- If `f` is an injective function, then `s` is equivalent to `f '' s`. -/ @[simps apply] protected noncomputable def image {α β} (f : α → β) (s : set α) (H : injective f) : s ≃ (f '' s) := equiv.set.image_of_inj_on f s (H.inj_on s) @[simp] protected lemma image_symm_apply {α β} (f : α → β) (s : set α) (H : injective f) (x : α) (h : x ∈ s) : (set.image f s H).symm ⟨f x, ⟨x, ⟨h, rfl⟩⟩⟩ = ⟨x, h⟩ := begin apply (set.image f s H).injective, simp [(set.image f s H).apply_symm_apply], end lemma image_symm_preimage {α β} {f : α → β} (hf : injective f) (u s : set α) : (λ x, (set.image f s hf).symm x : f '' s → α) ⁻¹' u = coe ⁻¹' (f '' u) := begin ext ⟨b, a, has, rfl⟩, have : ∀(h : ∃a', a' ∈ s ∧ a' = a), classical.some h = a := λ h, (classical.some_spec h).2, simp [equiv.set.image, equiv.set.image_of_inj_on, hf.eq_iff, this], end /-- If `α` is equivalent to `β`, then `set α` is equivalent to `set β`. -/ @[simps] protected def congr {α β : Type*} (e : α ≃ β) : set α ≃ set β := ⟨λ s, e '' s, λ t, e.symm '' t, symm_image_image e, symm_image_image e.symm⟩ /-- The set `{x ∈ s | t x}` is equivalent to the set of `x : s` such that `t x`. -/ protected def sep {α : Type u} (s : set α) (t : α → Prop) : ({ x ∈ s | t x } : set α) ≃ { x : s | t x } := (equiv.subtype_subtype_equiv_subtype_inter s t).symm /-- The set `𝒫 S := {x | x ⊆ S}` is equivalent to the type `set S`. -/ protected def powerset {α} (S : set α) : 𝒫 S ≃ set S := { to_fun := λ x : 𝒫 S, coe ⁻¹' (x : set α), inv_fun := λ x : set S, ⟨coe '' x, by rintro _ ⟨a : S, _, rfl⟩; exact a.2⟩, left_inv := λ x, by ext y; exact ⟨λ ⟨⟨_, _⟩, h, rfl⟩, h, λ h, ⟨⟨_, x.2 h⟩, h, rfl⟩⟩, right_inv := λ x, by ext; simp } /-- If `s` is a set in `range f`, then its image under `range_splitting f` is in bijection (via `f`) with `s`. -/ @[simps] noncomputable def range_splitting_image_equiv {α β : Type*} (f : α → β) (s : set (range f)) : range_splitting f '' s ≃ s := { to_fun := λ x, ⟨⟨f x, by simp⟩, (by { rcases x with ⟨x, ⟨y, ⟨m, rfl⟩⟩⟩, simpa [apply_range_splitting f] using m, })⟩, inv_fun := λ x, ⟨range_splitting f x, ⟨x, ⟨x.2, rfl⟩⟩⟩, left_inv := λ x, by { rcases x with ⟨x, ⟨y, ⟨m, rfl⟩⟩⟩, simp [apply_range_splitting f] }, right_inv := λ x, by simp [apply_range_splitting f], } end set /-- If `f : α → β` has a left-inverse when `α` is nonempty, then `α` is computably equivalent to the range of `f`. While awkward, the `nonempty α` hypothesis on `f_inv` and `hf` allows this to be used when `α` is empty too. This hypothesis is absent on analogous definitions on stronger `equiv`s like `linear_equiv.of_left_inverse` and `ring_equiv.of_left_inverse` as their typeclass assumptions are already sufficient to ensure non-emptiness. -/ @[simps] def of_left_inverse {α β : Sort*} (f : α → β) (f_inv : nonempty α → β → α) (hf : Π h : nonempty α, left_inverse (f_inv h) f) : α ≃ range f := { to_fun := λ a, ⟨f a, a, rfl⟩, inv_fun := λ b, f_inv (nonempty_of_exists b.2) b, left_inv := λ a, hf ⟨a⟩ a, right_inv := λ ⟨b, a, ha⟩, subtype.eq $ show f (f_inv ⟨a⟩ b) = b, from eq.trans (congr_arg f $ by exact ha ▸ (hf _ a)) ha } /-- If `f : α → β` has a left-inverse, then `α` is computably equivalent to the range of `f`. Note that if `α` is empty, no such `f_inv` exists and so this definition can't be used, unlike the stronger but less convenient `of_left_inverse`. -/ abbreviation of_left_inverse' {α β : Sort*} (f : α → β) (f_inv : β → α) (hf : left_inverse f_inv f) : α ≃ range f := of_left_inverse f (λ _, f_inv) (λ _, hf) /-- If `f : α → β` is an injective function, then domain `α` is equivalent to the range of `f`. -/ @[simps apply] noncomputable def of_injective {α β} (f : α → β) (hf : injective f) : α ≃ range f := equiv.of_left_inverse f (λ h, by exactI function.inv_fun f) (λ h, by exactI function.left_inverse_inv_fun hf) theorem apply_of_injective_symm {α β} {f : α → β} (hf : injective f) (b : range f) : f ((of_injective f hf).symm b) = b := subtype.ext_iff.1 $ (of_injective f hf).apply_symm_apply b @[simp] theorem of_injective_symm_apply {α β} {f : α → β} (hf : injective f) (a : α) : (of_injective f hf).symm ⟨f a, ⟨a, rfl⟩⟩ = a := begin apply (of_injective f hf).injective, simp [apply_of_injective_symm hf], end lemma coe_of_injective_symm {α β} {f : α → β} (hf : injective f) : ((of_injective f hf).symm : range f → α) = range_splitting f := by { ext ⟨y, x, rfl⟩, apply hf, simp [apply_range_splitting f] } @[simp] lemma self_comp_of_injective_symm {α β} {f : α → β} (hf : injective f) : f ∘ ((of_injective f hf).symm) = coe := funext (λ x, apply_of_injective_symm hf x) lemma of_left_inverse_eq_of_injective {α β : Type*} (f : α → β) (f_inv : nonempty α → β → α) (hf : Π h : nonempty α, left_inverse (f_inv h) f) : of_left_inverse f f_inv hf = of_injective f ((em (nonempty α)).elim (λ h, (hf h).injective) (λ h _ _ _, by { haveI : subsingleton α := subsingleton_of_not_nonempty h, simp })) := by { ext, simp } lemma of_left_inverse'_eq_of_injective {α β : Type*} (f : α → β) (f_inv : β → α) (hf : left_inverse f_inv f) : of_left_inverse' f f_inv hf = of_injective f hf.injective := by { ext, simp } protected lemma set_forall_iff {α β} (e : α ≃ β) {p : set α → Prop} : (∀ a, p a) ↔ (∀ a, p (e ⁻¹' a)) := e.injective.preimage_surjective.forall lemma preimage_pi_equiv_pi_subtype_prod_symm_pi {α : Type*} {β : α → Type*} (p : α → Prop) [decidable_pred p] (s : Π i, set (β i)) : (pi_equiv_pi_subtype_prod p β).symm ⁻¹' pi univ s = (pi univ (λ i : {i // p i}, s i)) ×ˢ (pi univ (λ i : {i // ¬p i}, s i)) := begin ext ⟨f, g⟩, simp only [mem_preimage, mem_univ_pi, prod_mk_mem_set_prod_eq, subtype.forall, ← forall_and_distrib], refine forall_congr (λ i, _), dsimp only [subtype.coe_mk], by_cases hi : p i; simp [hi] end /-- `sigma_fiber_equiv f` for `f : α → β` is the natural equivalence between the type of all preimages of points under `f` and the total space `α`. -/ -- See also `equiv.sigma_fiber_equiv`. @[simps] def sigma_preimage_equiv {α β} (f : α → β) : (Σ b, f ⁻¹' {b}) ≃ α := sigma_fiber_equiv f /-- A family of equivalences between preimages of points gives an equivalence between domains. -/ -- See also `equiv.of_fiber_equiv`. @[simps] def of_preimage_equiv {α β γ} {f : α → γ} {g : β → γ} (e : Π c, (f ⁻¹' {c}) ≃ (g ⁻¹' {c})) : α ≃ β := equiv.of_fiber_equiv e lemma of_preimage_equiv_map {α β γ} {f : α → γ} {g : β → γ} (e : Π c, (f ⁻¹' {c}) ≃ (g ⁻¹' {c})) (a : α) : g (of_preimage_equiv e a) = f a := equiv.of_fiber_equiv_map e a end equiv /-- If a function is a bijection between two sets `s` and `t`, then it induces an equivalence between the types `↥s` and `↥t`. -/ noncomputable def set.bij_on.equiv {α : Type*} {β : Type*} {s : set α} {t : set β} (f : α → β) (h : bij_on f s t) : s ≃ t := equiv.of_bijective _ h.bijective /-- The composition of an updated function with an equiv on a subset can be expressed as an updated function. -/ lemma dite_comp_equiv_update {α : Type*} {β : Sort*} {γ : Sort*} {s : set α} (e : β ≃ s) (v : β → γ) (w : α → γ) (j : β) (x : γ) [decidable_eq β] [decidable_eq α] [∀ j, decidable (j ∈ s)] : (λ (i : α), if h : i ∈ s then (function.update v j x) (e.symm ⟨i, h⟩) else w i) = function.update (λ (i : α), if h : i ∈ s then v (e.symm ⟨i, h⟩) else w i) (e j) x := begin ext i, by_cases h : i ∈ s, { rw [dif_pos h, function.update_apply_equiv_apply, equiv.symm_symm, function.comp, function.update_apply, function.update_apply, dif_pos h], have h_coe : (⟨i, h⟩ : s) = e j ↔ i = e j := subtype.ext_iff.trans (by rw subtype.coe_mk), simp_rw h_coe }, { have : i ≠ e j, by { contrapose! h, have : (e j : α) ∈ s := (e j).2, rwa ← h at this }, simp [h, this] } end