/- Copyright (c) 2020 Devon Tuma. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Johannes Hölzl, Devon Tuma -/ import probability.probability_mass_function.basic /-! # Monad Operations for Probability Mass Functions This file constructs two operations on `pmf` that give it a monad structure. `pure a` is the distribution where a single value `a` has probability `1`. `bind pa pb : pmf β` is the distribution given by sampling `a : α` from `pa : pmf α`, and then sampling from `pb a : pmf β` to get a final result `b : β`. `bind_on_support` generalizes `bind` to allow binding to a partial function, so that the second argument only needs to be defined on the support of the first argument. -/ noncomputable theory variables {α β γ : Type*} open_locale classical big_operators nnreal ennreal namespace pmf section pure /-- The pure `pmf` is the `pmf` where all the mass lies in one point. The value of `pure a` is `1` at `a` and `0` elsewhere. -/ def pure (a : α) : pmf α := ⟨λ a', if a' = a then 1 else 0, has_sum_ite_eq _ _⟩ variables (a a' : α) @[simp] lemma pure_apply : pure a a' = (if a' = a then 1 else 0) := rfl @[simp] lemma support_pure : (pure a).support = {a} := set.ext (λ a', by simp [mem_support_iff]) lemma mem_support_pure_iff: a' ∈ (pure a).support ↔ a' = a := by simp instance [inhabited α] : inhabited (pmf α) := ⟨pure default⟩ section measure variable (s : set α) @[simp] lemma to_outer_measure_pure_apply : (pure a).to_outer_measure s = if a ∈ s then 1 else 0 := begin refine (to_outer_measure_apply' (pure a) s).trans _, split_ifs with ha ha, { refine ennreal.coe_eq_one.2 ((tsum_congr (λ b, _)).trans (tsum_ite_eq a 1)), exact ite_eq_left_iff.2 (λ hb, symm (ite_eq_right_iff.2 (λ h, (hb $ h.symm ▸ ha).elim))) }, { refine ennreal.coe_eq_zero.2 ((tsum_congr (λ b, _)).trans (tsum_zero)), exact ite_eq_right_iff.2 (λ hb, ite_eq_right_iff.2 (λ h, (ha $ h ▸ hb).elim)) } end /-- The measure of a set under `pure a` is `1` for sets containing `a` and `0` otherwise -/ @[simp] lemma to_measure_pure_apply [measurable_space α] (hs : measurable_set s) : (pure a).to_measure s = if a ∈ s then 1 else 0 := (to_measure_apply_eq_to_outer_measure_apply (pure a) s hs).trans (to_outer_measure_pure_apply a s) end measure end pure section bind protected lemma bind.summable (p : pmf α) (f : α → pmf β) (b : β) : summable (λ a : α, p a * f a b) := begin refine nnreal.summable_of_le (assume a, _) p.summable_coe, suffices : p a * f a b ≤ p a * 1, { simpa }, exact mul_le_mul_of_nonneg_left ((f a).coe_le_one _) (p a).2 end /-- The monadic bind operation for `pmf`. -/ def bind (p : pmf α) (f : α → pmf β) : pmf β := ⟨λ b, ∑'a, p a * f a b, begin apply ennreal.has_sum_coe.1, simp only [ennreal.coe_tsum (bind.summable p f _)], rw [ennreal.summable.has_sum_iff, ennreal.tsum_comm], simp [ennreal.tsum_mul_left, (ennreal.coe_tsum (f _).summable_coe).symm, (ennreal.coe_tsum p.summable_coe).symm] end⟩ variables (p : pmf α) (f : α → pmf β) (g : β → pmf γ) @[simp] lemma bind_apply (b : β) : p.bind f b = ∑'a, p a * f a b := rfl @[simp] lemma support_bind : (p.bind f).support = {b | ∃ a ∈ p.support, b ∈ (f a).support} := set.ext (λ b, by simp [mem_support_iff, tsum_eq_zero_iff (bind.summable p f b), not_or_distrib]) lemma mem_support_bind_iff (b : β) : b ∈ (p.bind f).support ↔ ∃ a ∈ p.support, b ∈ (f a).support := by simp lemma coe_bind_apply (b : β) : (p.bind f b : ℝ≥0∞) = ∑'a, p a * f a b := eq.trans (ennreal.coe_tsum $ bind.summable p f b) $ by simp @[simp] lemma pure_bind (a : α) (f : α → pmf β) : (pure a).bind f = f a := have ∀ b a', ite (a' = a) 1 0 * f a' b = ite (a' = a) (f a b) 0, from assume b a', by split_ifs; simp; subst h; simp, by ext b; simp [this] @[simp] lemma bind_pure : p.bind pure = p := have ∀ a a', (p a * ite (a' = a) 1 0) = ite (a = a') (p a') 0, from assume a a', begin split_ifs; try { subst a }; try { subst a' }; simp * at * end, by ext b; simp [this] @[simp] lemma bind_bind : (p.bind f).bind g = p.bind (λ a, (f a).bind g) := begin ext1 b, simp only [ennreal.coe_eq_coe.symm, coe_bind_apply, ennreal.tsum_mul_left.symm, ennreal.tsum_mul_right.symm], rw [ennreal.tsum_comm], simp [mul_assoc, mul_left_comm, mul_comm] end lemma bind_comm (p : pmf α) (q : pmf β) (f : α → β → pmf γ) : p.bind (λ a, q.bind (f a)) = q.bind (λ b, p.bind (λ a, f a b)) := begin ext1 b, simp only [ennreal.coe_eq_coe.symm, coe_bind_apply, ennreal.tsum_mul_left.symm, ennreal.tsum_mul_right.symm], rw [ennreal.tsum_comm], simp [mul_assoc, mul_left_comm, mul_comm] end section measure variable (s : set β) @[simp] lemma to_outer_measure_bind_apply : (p.bind f).to_outer_measure s = ∑' (a : α), (p a : ℝ≥0∞) * (f a).to_outer_measure s := calc (p.bind f).to_outer_measure s = ∑' (b : β), if b ∈ s then (↑(∑' (a : α), p a * f a b) : ℝ≥0∞) else 0 : by simp [to_outer_measure_apply, set.indicator_apply] ... = ∑' (b : β), ↑(∑' (a : α), p a * (if b ∈ s then f a b else 0)) : tsum_congr (λ b, by split_ifs; simp) ... = ∑' (b : β) (a : α), ↑(p a * (if b ∈ s then f a b else 0)) : tsum_congr (λ b, ennreal.coe_tsum $ nnreal.summable_of_le (by split_ifs; simp) (bind.summable p f b)) ... = ∑' (a : α) (b : β), ↑(p a) * ↑(if b ∈ s then f a b else 0) : ennreal.tsum_comm.trans (tsum_congr $ λ a, tsum_congr $ λ b, ennreal.coe_mul) ... = ∑' (a : α), ↑(p a) * ∑' (b : β), ↑(if b ∈ s then f a b else 0) : tsum_congr (λ a, ennreal.tsum_mul_left) ... = ∑' (a : α), ↑(p a) * ∑' (b : β), if b ∈ s then ↑(f a b) else (0 : ℝ≥0∞) : tsum_congr (λ a, congr_arg (λ x, ↑(p a) * x) $ tsum_congr (λ b, by split_ifs; refl)) ... = ∑' (a : α), ↑(p a) * (f a).to_outer_measure s : tsum_congr (λ a, by simp only [to_outer_measure_apply, set.indicator_apply]) /-- The measure of a set under `p.bind f` is the sum over `a : α` of the probability of `a` under `p` times the measure of the set under `f a` -/ @[simp] lemma to_measure_bind_apply [measurable_space β] (hs : measurable_set s) : (p.bind f).to_measure s = ∑' (a : α), (p a : ℝ≥0∞) * (f a).to_measure s := (to_measure_apply_eq_to_outer_measure_apply (p.bind f) s hs).trans ((to_outer_measure_bind_apply p f s).trans (tsum_congr (λ a, congr_arg (λ x, p a * x) (to_measure_apply_eq_to_outer_measure_apply (f a) s hs).symm))) end measure end bind instance : monad pmf := { pure := λ A a, pure a, bind := λ A B pa pb, pa.bind pb } section bind_on_support protected lemma bind_on_support.summable (p : pmf α) (f : Π a ∈ p.support, pmf β) (b : β) : summable (λ a : α, p a * if h : p a = 0 then 0 else f a h b) := begin refine nnreal.summable_of_le (assume a, _) p.summable_coe, split_ifs, { refine (mul_zero (p a)).symm ▸ le_of_eq h.symm }, { suffices : p a * f a h b ≤ p a * 1, { simpa }, exact mul_le_mul_of_nonneg_left ((f a h).coe_le_one _) (p a).2 } end /-- Generalized version of `bind` allowing `f` to only be defined on the support of `p`. `p.bind f` is equivalent to `p.bind_on_support (λ a _, f a)`, see `bind_on_support_eq_bind` -/ def bind_on_support (p : pmf α) (f : Π a ∈ p.support, pmf β) : pmf β := ⟨λ b, ∑' a, p a * if h : p a = 0 then 0 else f a h b, ennreal.has_sum_coe.1 begin simp only [ennreal.coe_tsum (bind_on_support.summable p f _)], rw [ennreal.summable.has_sum_iff, ennreal.tsum_comm], simp only [ennreal.coe_mul, ennreal.coe_one, ennreal.tsum_mul_left], have : ∑' (a : α), (p a : ennreal) = 1 := by simp only [←ennreal.coe_tsum p.summable_coe, ennreal.coe_one, tsum_coe], refine trans (tsum_congr (λ a, _)) this, split_ifs with h, { simp [h] }, { simp [← ennreal.coe_tsum (f a h).summable_coe, (f a h).tsum_coe] } end⟩ variables {p : pmf α} (f : Π a ∈ p.support, pmf β) @[simp] lemma bind_on_support_apply (b : β) : p.bind_on_support f b = ∑' a, p a * if h : p a = 0 then 0 else f a h b := rfl @[simp] lemma support_bind_on_support : (p.bind_on_support f).support = {b | ∃ (a : α) (h : a ∈ p.support), b ∈ (f a h).support} := begin refine set.ext (λ b, _), simp only [tsum_eq_zero_iff (bind_on_support.summable p f b), not_or_distrib, mem_support_iff, bind_on_support_apply, ne.def, not_forall, mul_eq_zero], exact ⟨λ hb, let ⟨a, ⟨ha, ha'⟩⟩ := hb in ⟨a, ha, by simpa [ha] using ha'⟩, λ hb, let ⟨a, ha, ha'⟩ := hb in ⟨a, ⟨ha, by simpa [(mem_support_iff _ a).1 ha] using ha'⟩⟩⟩ end lemma mem_support_bind_on_support_iff (b : β) : b ∈ (p.bind_on_support f).support ↔ ∃ (a : α) (h : a ∈ p.support), b ∈ (f a h).support := by simp /-- `bind_on_support` reduces to `bind` if `f` doesn't depend on the additional hypothesis -/ @[simp] lemma bind_on_support_eq_bind (p : pmf α) (f : α → pmf β) : p.bind_on_support (λ a _, f a) = p.bind f := begin ext b, simp only [bind_on_support_apply (λ a _, f a), p.bind_apply f, dite_eq_ite, nnreal.coe_eq, mul_ite, mul_zero], refine congr_arg _ (funext (λ a, _)), split_ifs with h; simp [h], end lemma coe_bind_on_support_apply (b : β) : (p.bind_on_support f b : ℝ≥0∞) = ∑' a, p a * if h : p a = 0 then 0 else f a h b := by simp only [bind_on_support_apply, ennreal.coe_tsum (bind_on_support.summable p f b), dite_cast, ennreal.coe_mul, ennreal.coe_zero] lemma bind_on_support_eq_zero_iff (b : β) : p.bind_on_support f b = 0 ↔ ∀ a (ha : p a ≠ 0), f a ha b = 0 := begin simp only [bind_on_support_apply, tsum_eq_zero_iff (bind_on_support.summable p f b), mul_eq_zero, or_iff_not_imp_left], exact ⟨λ h a ha, trans (dif_neg ha).symm (h a ha), λ h a ha, trans (dif_neg ha) (h a ha)⟩, end @[simp] lemma pure_bind_on_support (a : α) (f : Π (a' : α) (ha : a' ∈ (pure a).support), pmf β) : (pure a).bind_on_support f = f a ((mem_support_pure_iff a a).mpr rfl) := begin refine pmf.ext (λ b, _), simp only [nnreal.coe_eq, bind_on_support_apply, pure_apply], refine trans (tsum_congr (λ a', _)) (tsum_ite_eq a _), by_cases h : (a' = a); simp [h], end lemma bind_on_support_pure (p : pmf α) : p.bind_on_support (λ a _, pure a) = p := by simp only [pmf.bind_pure, pmf.bind_on_support_eq_bind] @[simp] lemma bind_on_support_bind_on_support (p : pmf α) (f : ∀ a ∈ p.support, pmf β) (g : ∀ (b ∈ (p.bind_on_support f).support), pmf γ) : (p.bind_on_support f).bind_on_support g = p.bind_on_support (λ a ha, (f a ha).bind_on_support (λ b hb, g b ((mem_support_bind_on_support_iff f b).mpr ⟨a, ha, hb⟩))) := begin refine pmf.ext (λ a, _), simp only [ennreal.coe_eq_coe.symm, coe_bind_on_support_apply, ← tsum_dite_right, ennreal.tsum_mul_left.symm, ennreal.tsum_mul_right.symm], simp only [ennreal.tsum_eq_zero, ennreal.coe_eq_coe, ennreal.coe_eq_zero, ennreal.coe_zero, dite_eq_left_iff, mul_eq_zero], refine ennreal.tsum_comm.trans (tsum_congr (λ a', tsum_congr (λ b, _))), split_ifs, any_goals { ring1 }, { have := h_1 a', simp [h] at this, contradiction }, { simp [h_2], }, end lemma bind_on_support_comm (p : pmf α) (q : pmf β) (f : ∀ (a ∈ p.support) (b ∈ q.support), pmf γ) : p.bind_on_support (λ a ha, q.bind_on_support (f a ha)) = q.bind_on_support (λ b hb, p.bind_on_support (λ a ha, f a ha b hb)) := begin apply pmf.ext, rintro c, simp only [ennreal.coe_eq_coe.symm, coe_bind_on_support_apply, ← tsum_dite_right, ennreal.tsum_mul_left.symm, ennreal.tsum_mul_right.symm], refine trans (ennreal.tsum_comm) (tsum_congr (λ b, tsum_congr (λ a, _))), split_ifs with h1 h2 h2; ring, end section measure variable (s : set β) @[simp] lemma to_outer_measure_bind_on_support_apply : (p.bind_on_support f).to_outer_measure s = ∑' (a : α), (p a : ℝ≥0) * if h : p a = 0 then 0 else (f a h).to_outer_measure s := let g : α → β → ℝ≥0 := λ a b, if h : p a = 0 then 0 else f a h b in calc (p.bind_on_support f).to_outer_measure s = ∑' (b : β), if b ∈ s then ↑(∑' (a : α), p a * g a b) else 0 : by simp [to_outer_measure_apply, set.indicator_apply] ... = ∑' (b : β), ↑(∑' (a : α), p a * (if b ∈ s then g a b else 0)) : tsum_congr (λ b, by split_ifs; simp) ... = ∑' (b : β) (a : α), ↑(p a * (if b ∈ s then g a b else 0)) : tsum_congr (λ b, ennreal.coe_tsum $ nnreal.summable_of_le (by split_ifs; simp) (bind_on_support.summable p f b)) ... = ∑' (a : α) (b : β), ↑(p a) * ↑(if b ∈ s then g a b else 0) : ennreal.tsum_comm.trans (tsum_congr $ λ a, tsum_congr $ λ b, ennreal.coe_mul) ... = ∑' (a : α), ↑(p a) * ∑' (b : β), ↑(if b ∈ s then g a b else 0) : tsum_congr (λ a, ennreal.tsum_mul_left) ... = ∑' (a : α), ↑(p a) * ∑' (b : β), if b ∈ s then ↑(g a b) else (0 : ℝ≥0∞) : tsum_congr (λ a, congr_arg (λ x, ↑(p a) * x) $ tsum_congr (λ b, by split_ifs; refl)) ... = ∑' (a : α), ↑(p a) * if h : p a = 0 then 0 else (f a h).to_outer_measure s : tsum_congr (λ a, congr_arg (has_mul.mul ↑(p a)) begin split_ifs with h h, { refine ennreal.tsum_eq_zero.mpr (λ x, _), simp only [g, h, dif_pos], apply if_t_t }, { simp only [to_outer_measure_apply, g, h, set.indicator_apply, not_false_iff, dif_neg] } end) /-- The measure of a set under `p.bind_on_support f` is the sum over `a : α` of the probability of `a` under `p` times the measure of the set under `f a _`. The additional if statement is needed since `f` is only a partial function -/ @[simp] lemma to_measure_bind_on_support_apply [measurable_space β] (hs : measurable_set s) : (p.bind_on_support f).to_measure s = ∑' (a : α), (p a : ℝ≥0∞) * if h : p a = 0 then 0 else (f a h).to_measure s := (to_measure_apply_eq_to_outer_measure_apply (p.bind_on_support f) s hs).trans ((to_outer_measure_bind_on_support_apply f s).trans (tsum_congr $ λ a, congr_arg (has_mul.mul ↑(p a)) (congr_arg (dite (p a = 0) (λ _, 0)) $ funext (λ h, symm $ to_measure_apply_eq_to_outer_measure_apply (f a h) s hs)))) end measure end bind_on_support end pmf