/- Copyright (c) 2020 Scott Morrison. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Scott Morrison -/ import representation_theory.basic import representation_theory.Action import algebra.category.Module.abelian import algebra.category.Module.colimits import algebra.category.Module.monoidal /-! # `Rep k G` is the category of `k`-linear representations of `G`. If `V : Rep k G`, there is a coercion that allows you to treat `V` as a type, and this type comes equipped with a `module k V` instance. Also `V.ρ` gives the homomorphism `G →* (V →ₗ[k] V)`. Conversely, given a homomorphism `ρ : G →* (V →ₗ[k] V)`, you can construct the bundled representation as `Rep.of ρ`. We construct the categorical equivalence `Rep k G ≌ Module (monoid_algebra k G)`. We verify that `Rep k G` is a `k`-linear abelian symmetric monoidal category with all (co)limits. -/ universes u open category_theory open category_theory.limits /-- The category of `k`-linear representations of a monoid `G`. -/ @[derive [large_category, concrete_category, has_limits, has_colimits, preadditive, abelian]] abbreviation Rep (k G : Type u) [ring k] [monoid G] := Action (Module.{u} k) (Mon.of G) instance (k G : Type u) [comm_ring k] [monoid G] : linear k (Rep k G) := by apply_instance namespace Rep variables {k G : Type u} [comm_ring k] [monoid G] instance : has_coe_to_sort (Rep k G) (Type u) := concrete_category.has_coe_to_sort _ instance (V : Rep k G) : add_comm_group V := by { change add_comm_group ((forget₂ (Rep k G) (Module k)).obj V), apply_instance, } instance (V : Rep k G) : module k V := by { change module k ((forget₂ (Rep k G) (Module k)).obj V), apply_instance, } /-- Specialize the existing `Action.ρ`, changing the type to `representation k G V`. -/ def ρ (V : Rep k G) : representation k G V := V.ρ /-- Lift an unbundled representation to `Rep`. -/ def of {V : Type u} [add_comm_group V] [module k V] (ρ : G →* (V →ₗ[k] V)) : Rep k G := ⟨Module.of k V, ρ⟩ @[simp] lemma coe_of {V : Type u} [add_comm_group V] [module k V] (ρ : G →* (V →ₗ[k] V)) : (of ρ : Type u) = V := rfl @[simp] lemma of_ρ {V : Type u} [add_comm_group V] [module k V] (ρ : G →* (V →ₗ[k] V)) : (of ρ).ρ = ρ := rfl -- Verify that limits are calculated correctly. noncomputable example : preserves_limits (forget₂ (Rep k G) (Module.{u} k)) := by apply_instance noncomputable example : preserves_colimits (forget₂ (Rep k G) (Module.{u} k)) := by apply_instance end Rep /-! # The categorical equivalence `Rep k G ≌ Module.{u} (monoid_algebra k G)`. -/ namespace Rep variables {k G : Type u} [comm_ring k] [monoid G] -- Verify that the symmetric monoidal structure is available. example : symmetric_category (Rep k G) := by apply_instance example : monoidal_preadditive (Rep k G) := by apply_instance example : monoidal_linear k (Rep k G) := by apply_instance noncomputable theory /-- Auxilliary lemma for `to_Module_monoid_algebra`. -/ lemma to_Module_monoid_algebra_map_aux {k G : Type*} [comm_ring k] [monoid G] (V W : Type*) [add_comm_group V] [add_comm_group W] [module k V] [module k W] (ρ : G →* V →ₗ[k] V) (σ : G →* W →ₗ[k] W) (f : V →ₗ[k] W) (w : ∀ (g : G), f.comp (ρ g) = (σ g).comp f) (r : monoid_algebra k G) (x : V) : f ((((monoid_algebra.lift k G (V →ₗ[k] V)) ρ) r) x) = (((monoid_algebra.lift k G (W →ₗ[k] W)) σ) r) (f x) := begin apply monoid_algebra.induction_on r, { intro g, simp only [one_smul, monoid_algebra.lift_single, monoid_algebra.of_apply], exact linear_map.congr_fun (w g) x, }, { intros g h gw hw, simp only [map_add, add_left_inj, linear_map.add_apply, hw, gw], }, { intros r g w, simp only [alg_hom.map_smul, w, ring_hom.id_apply, linear_map.smul_apply, linear_map.map_smulₛₗ], } end /-- Auxilliary definition for `to_Module_monoid_algebra`. -/ def to_Module_monoid_algebra_map {V W : Rep k G} (f : V ⟶ W) : Module.of (monoid_algebra k G) V.ρ.as_module ⟶ Module.of (monoid_algebra k G) W.ρ.as_module := { map_smul' := λ r x, to_Module_monoid_algebra_map_aux V.V W.V V.ρ W.ρ f.hom f.comm r x, ..f.hom, } /-- Functorially convert a representation of `G` into a module over `monoid_algebra k G`. -/ def to_Module_monoid_algebra : Rep k G ⥤ Module.{u} (monoid_algebra k G) := { obj := λ V, Module.of _ V.ρ.as_module , map := λ V W f, to_Module_monoid_algebra_map f, } /-- Functorially convert a module over `monoid_algebra k G` into a representation of `G`. -/ def of_Module_monoid_algebra : Module.{u} (monoid_algebra k G) ⥤ Rep k G := { obj := λ M, Rep.of (representation.of_module k G M), map := λ M N f, { hom := { map_smul' := λ r x, f.map_smul (algebra_map k _ r) x, ..f }, comm' := λ g, by { ext, apply f.map_smul, }, }, }. lemma of_Module_monoid_algebra_obj_coe (M : Module.{u} (monoid_algebra k G)) : (of_Module_monoid_algebra.obj M : Type u) = restrict_scalars k (monoid_algebra k G) M := rfl lemma of_Module_monoid_algebra_obj_ρ (M : Module.{u} (monoid_algebra k G)) : (of_Module_monoid_algebra.obj M).ρ = representation.of_module k G M := rfl /-- Auxilliary definition for `equivalence_Module_monoid_algebra`. -/ def counit_iso_add_equiv {M : Module.{u} (monoid_algebra k G)} : ((of_Module_monoid_algebra ⋙ to_Module_monoid_algebra).obj M) ≃+ M := begin dsimp [of_Module_monoid_algebra, to_Module_monoid_algebra], refine (representation.of_module k G ↥M).as_module_equiv.trans (restrict_scalars.add_equiv _ _ _), end /-- Auxilliary definition for `equivalence_Module_monoid_algebra`. -/ def unit_iso_add_equiv {V : Rep k G} : V ≃+ ((to_Module_monoid_algebra ⋙ of_Module_monoid_algebra).obj V) := begin dsimp [of_Module_monoid_algebra, to_Module_monoid_algebra], refine V.ρ.as_module_equiv.symm.trans _, exact (restrict_scalars.add_equiv _ _ _).symm, end /-- Auxilliary definition for `equivalence_Module_monoid_algebra`. -/ def counit_iso (M : Module.{u} (monoid_algebra k G)) : (of_Module_monoid_algebra ⋙ to_Module_monoid_algebra).obj M ≅ M := linear_equiv.to_Module_iso' { map_smul' := λ r x, begin dsimp [counit_iso_add_equiv], simp, end, ..counit_iso_add_equiv, } lemma unit_iso_comm (V : Rep k G) (g : G) (x : V) : unit_iso_add_equiv (((V.ρ) g).to_fun x) = (((of_Module_monoid_algebra.obj (to_Module_monoid_algebra.obj V)).ρ) g).to_fun (unit_iso_add_equiv x) := begin dsimp [unit_iso_add_equiv, of_Module_monoid_algebra, to_Module_monoid_algebra], simp only [add_equiv.apply_eq_iff_eq, add_equiv.apply_symm_apply, representation.as_module_equiv_symm_map_rho, representation.of_module_as_module_act], end /-- Auxilliary definition for `equivalence_Module_monoid_algebra`. -/ def unit_iso (V : Rep k G) : V ≅ ((to_Module_monoid_algebra ⋙ of_Module_monoid_algebra).obj V) := Action.mk_iso (linear_equiv.to_Module_iso' { map_smul' := λ r x, begin dsimp [unit_iso_add_equiv], simp only [representation.as_module_equiv_symm_map_smul, restrict_scalars.add_equiv_symm_map_algebra_map_smul], end, ..unit_iso_add_equiv, }) (λ g, by { ext, apply unit_iso_comm, }) /-- The categorical equivalence `Rep k G ≌ Module (monoid_algebra k G)`. -/ def equivalence_Module_monoid_algebra : Rep k G ≌ Module.{u} (monoid_algebra k G) := { functor := to_Module_monoid_algebra, inverse := of_Module_monoid_algebra, unit_iso := nat_iso.of_components (λ V, unit_iso V) (by tidy), counit_iso := nat_iso.of_components (λ M, counit_iso M) (by tidy), } -- TODO Verify that the equivalence with `Module (monoid_algebra k G)` is a monoidal functor. end Rep