/- Copyright (c) 2021 Aaron Anderson. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Aaron Anderson -/ import order.well_founded_set import algebra.big_operators.finprod import ring_theory.valuation.basic import algebra.module.pi import ring_theory.power_series.basic import data.finsupp.pwo /-! # Hahn Series If `Γ` is ordered and `R` has zero, then `hahn_series Γ R` consists of formal series over `Γ` with coefficients in `R`, whose supports are partially well-ordered. With further structure on `R` and `Γ`, we can add further structure on `hahn_series Γ R`, with the most studied case being when `Γ` is a linearly ordered abelian group and `R` is a field, in which case `hahn_series Γ R` is a valued field, with value group `Γ`. These generalize Laurent series (with value group `ℤ`), and Laurent series are implemented that way in the file `ring_theory/laurent_series`. ## Main Definitions * If `Γ` is ordered and `R` has zero, then `hahn_series Γ R` consists of formal series over `Γ` with coefficients in `R`, whose supports are partially well-ordered. * If `R` is a (commutative) additive monoid or group, then so is `hahn_series Γ R`. * If `R` is a (comm_)(semi)ring, then so is `hahn_series Γ R`. * `hahn_series.add_val Γ R` defines an `add_valuation` on `hahn_series Γ R` when `Γ` is linearly ordered. * A `hahn_series.summable_family` is a family of Hahn series such that the union of their supports is well-founded and only finitely many are nonzero at any given coefficient. They have a formal sum, `hahn_series.summable_family.hsum`, which can be bundled as a `linear_map` as `hahn_series.summable_family.lsum`. Note that this is different from `summable` in the valuation topology, because there are topologically summable families that do not satisfy the axioms of `hahn_series.summable_family`, and formally summable families whose sums do not converge topologically. * Laurent series over `R` are implemented as `hahn_series ℤ R` in the file `ring_theory/laurent_series`. ## TODO * Build an API for the variable `X` (defined to be `single 1 1 : hahn_series Γ R`) in analogy to `X : R[X]` and `X : power_series R` ## References - [J. van der Hoeven, *Operators on Generalized Power Series*][van_der_hoeven] -/ open finset function open_locale big_operators classical pointwise polynomial noncomputable theory /-- If `Γ` is linearly ordered and `R` has zero, then `hahn_series Γ R` consists of formal series over `Γ` with coefficients in `R`, whose supports are well-founded. -/ @[ext] structure hahn_series (Γ : Type*) (R : Type*) [partial_order Γ] [has_zero R] := (coeff : Γ → R) (is_pwo_support' : (support coeff).is_pwo) variables {Γ : Type*} {R : Type*} namespace hahn_series section zero variables [partial_order Γ] [has_zero R] lemma coeff_injective : injective (coeff : hahn_series Γ R → (Γ → R)) := ext @[simp] lemma coeff_inj {x y : hahn_series Γ R} : x.coeff = y.coeff ↔ x = y := coeff_injective.eq_iff /-- The support of a Hahn series is just the set of indices whose coefficients are nonzero. Notably, it is well-founded. -/ def support (x : hahn_series Γ R) : set Γ := support x.coeff @[simp] lemma is_pwo_support (x : hahn_series Γ R) : x.support.is_pwo := x.is_pwo_support' @[simp] lemma is_wf_support (x : hahn_series Γ R) : x.support.is_wf := x.is_pwo_support.is_wf @[simp] lemma mem_support (x : hahn_series Γ R) (a : Γ) : a ∈ x.support ↔ x.coeff a ≠ 0 := iff.refl _ instance : has_zero (hahn_series Γ R) := ⟨{ coeff := 0, is_pwo_support' := by simp }⟩ instance : inhabited (hahn_series Γ R) := ⟨0⟩ instance [subsingleton R] : subsingleton (hahn_series Γ R) := ⟨λ a b, a.ext b (subsingleton.elim _ _)⟩ @[simp] lemma zero_coeff {a : Γ} : (0 : hahn_series Γ R).coeff a = 0 := rfl @[simp] lemma coeff_fun_eq_zero_iff {x : hahn_series Γ R} : x.coeff = 0 ↔ x = 0 := coeff_injective.eq_iff' rfl lemma ne_zero_of_coeff_ne_zero {x : hahn_series Γ R} {g : Γ} (h : x.coeff g ≠ 0) : x ≠ 0 := mt (λ x0, (x0.symm ▸ zero_coeff : x.coeff g = 0)) h @[simp] lemma support_zero : support (0 : hahn_series Γ R) = ∅ := function.support_zero @[simp] lemma support_nonempty_iff {x : hahn_series Γ R} : x.support.nonempty ↔ x ≠ 0 := by rw [support, support_nonempty_iff, ne.def, coeff_fun_eq_zero_iff] @[simp] lemma support_eq_empty_iff {x : hahn_series Γ R} : x.support = ∅ ↔ x = 0 := support_eq_empty_iff.trans coeff_fun_eq_zero_iff /-- `single a r` is the Hahn series which has coefficient `r` at `a` and zero otherwise. -/ def single (a : Γ) : zero_hom R (hahn_series Γ R) := { to_fun := λ r, { coeff := pi.single a r, is_pwo_support' := (set.is_pwo_singleton a).mono pi.support_single_subset }, map_zero' := ext _ _ (pi.single_zero _) } variables {a b : Γ} {r : R} @[simp] theorem single_coeff_same (a : Γ) (r : R) : (single a r).coeff a = r := pi.single_eq_same a r @[simp] theorem single_coeff_of_ne (h : b ≠ a) : (single a r).coeff b = 0 := pi.single_eq_of_ne h r theorem single_coeff : (single a r).coeff b = if (b = a) then r else 0 := by { split_ifs with h; simp [h] } @[simp] lemma support_single_of_ne (h : r ≠ 0) : support (single a r) = {a} := pi.support_single_of_ne h lemma support_single_subset : support (single a r) ⊆ {a} := pi.support_single_subset lemma eq_of_mem_support_single {b : Γ} (h : b ∈ support (single a r)) : b = a := support_single_subset h @[simp] lemma single_eq_zero : (single a (0 : R)) = 0 := (single a).map_zero lemma single_injective (a : Γ) : function.injective (single a : R → hahn_series Γ R) := λ r s rs, by rw [← single_coeff_same a r, ← single_coeff_same a s, rs] lemma single_ne_zero (h : r ≠ 0) : single a r ≠ 0 := λ con, h (single_injective a (con.trans single_eq_zero.symm)) @[simp] lemma single_eq_zero_iff {a : Γ} {r : R} : single a r = 0 ↔ r = 0 := begin split, { contrapose!, exact single_ne_zero }, { simp {contextual := tt} } end instance [nonempty Γ] [nontrivial R] : nontrivial (hahn_series Γ R) := ⟨begin obtain ⟨r, s, rs⟩ := exists_pair_ne R, inhabit Γ, refine ⟨single (arbitrary Γ) r, single (arbitrary Γ) s, λ con, rs _⟩, rw [← single_coeff_same (arbitrary Γ) r, con, single_coeff_same], end⟩ section order variable [has_zero Γ] /-- The order of a nonzero Hahn series `x` is a minimal element of `Γ` where `x` has a nonzero coefficient, the order of 0 is 0. -/ def order (x : hahn_series Γ R) : Γ := if h : x = 0 then 0 else x.is_wf_support.min (support_nonempty_iff.2 h) @[simp] lemma order_zero : order (0 : hahn_series Γ R) = 0 := dif_pos rfl lemma order_of_ne {x : hahn_series Γ R} (hx : x ≠ 0) : order x = x.is_wf_support.min (support_nonempty_iff.2 hx) := dif_neg hx lemma coeff_order_ne_zero {x : hahn_series Γ R} (hx : x ≠ 0) : x.coeff x.order ≠ 0 := begin rw order_of_ne hx, exact x.is_wf_support.min_mem (support_nonempty_iff.2 hx) end lemma order_le_of_coeff_ne_zero {Γ} [linear_ordered_cancel_add_comm_monoid Γ] {x : hahn_series Γ R} {g : Γ} (h : x.coeff g ≠ 0) : x.order ≤ g := le_trans (le_of_eq (order_of_ne (ne_zero_of_coeff_ne_zero h))) (set.is_wf.min_le _ _ ((mem_support _ _).2 h)) @[simp] lemma order_single (h : r ≠ 0) : (single a r).order = a := (order_of_ne (single_ne_zero h)).trans (support_single_subset ((single a r).is_wf_support.min_mem (support_nonempty_iff.2 (single_ne_zero h)))) lemma coeff_eq_zero_of_lt_order {x : hahn_series Γ R} {i : Γ} (hi : i < x.order) : x.coeff i = 0 := begin rcases eq_or_ne x 0 with rfl|hx, { simp }, contrapose! hi, rw [←ne.def, ←mem_support] at hi, rw [order_of_ne hx], exact set.is_wf.not_lt_min _ _ hi end end order section domain variables {Γ' : Type*} [partial_order Γ'] /-- Extends the domain of a `hahn_series` by an `order_embedding`. -/ def emb_domain (f : Γ ↪o Γ') : hahn_series Γ R → hahn_series Γ' R := λ x, { coeff := λ (b : Γ'), if h : b ∈ f '' x.support then x.coeff (classical.some h) else 0, is_pwo_support' := (x.is_pwo_support.image_of_monotone f.monotone).mono (λ b hb, begin contrapose! hb, rw [function.mem_support, dif_neg hb, not_not], end) } @[simp] lemma emb_domain_coeff {f : Γ ↪o Γ'} {x : hahn_series Γ R} {a : Γ} : (emb_domain f x).coeff (f a) = x.coeff a := begin rw emb_domain, dsimp only, by_cases ha : a ∈ x.support, { rw dif_pos (set.mem_image_of_mem f ha), exact congr rfl (f.injective (classical.some_spec (set.mem_image_of_mem f ha)).2) }, { rw [dif_neg, not_not.1 (λ c, ha ((mem_support _ _).2 c))], contrapose! ha, obtain ⟨b, hb1, hb2⟩ := (set.mem_image _ _ _).1 ha, rwa f.injective hb2 at hb1 } end @[simp] lemma emb_domain_mk_coeff {f : Γ → Γ'} (hfi : function.injective f) (hf : ∀ g g' : Γ, f g ≤ f g' ↔ g ≤ g') {x : hahn_series Γ R} {a : Γ} : (emb_domain ⟨⟨f, hfi⟩, hf⟩ x).coeff (f a) = x.coeff a := emb_domain_coeff lemma emb_domain_notin_image_support {f : Γ ↪o Γ'} {x : hahn_series Γ R} {b : Γ'} (hb : b ∉ f '' x.support) : (emb_domain f x).coeff b = 0 := dif_neg hb lemma support_emb_domain_subset {f : Γ ↪o Γ'} {x : hahn_series Γ R} : support (emb_domain f x) ⊆ f '' x.support := begin intros g hg, contrapose! hg, rw [mem_support, emb_domain_notin_image_support hg, not_not], end lemma emb_domain_notin_range {f : Γ ↪o Γ'} {x : hahn_series Γ R} {b : Γ'} (hb : b ∉ set.range f) : (emb_domain f x).coeff b = 0 := emb_domain_notin_image_support (λ con, hb (set.image_subset_range _ _ con)) @[simp] lemma emb_domain_zero {f : Γ ↪o Γ'} : emb_domain f (0 : hahn_series Γ R) = 0 := by { ext, simp [emb_domain_notin_image_support] } @[simp] lemma emb_domain_single {f : Γ ↪o Γ'} {g : Γ} {r : R} : emb_domain f (single g r) = single (f g) r := begin ext g', by_cases h : g' = f g, { simp [h] }, rw [emb_domain_notin_image_support, single_coeff_of_ne h], by_cases hr : r = 0, { simp [hr] }, rwa [support_single_of_ne hr, set.image_singleton, set.mem_singleton_iff], end lemma emb_domain_injective {f : Γ ↪o Γ'} : function.injective (emb_domain f : hahn_series Γ R → hahn_series Γ' R) := λ x y xy, begin ext g, rw [ext_iff, function.funext_iff] at xy, have xyg := xy (f g), rwa [emb_domain_coeff, emb_domain_coeff] at xyg, end end domain end zero section addition variable [partial_order Γ] section add_monoid variable [add_monoid R] instance : has_add (hahn_series Γ R) := { add := λ x y, { coeff := x.coeff + y.coeff, is_pwo_support' := (x.is_pwo_support.union y.is_pwo_support).mono (function.support_add _ _) } } instance : add_monoid (hahn_series Γ R) := { zero := 0, add := (+), add_assoc := λ x y z, by { ext, apply add_assoc }, zero_add := λ x, by { ext, apply zero_add }, add_zero := λ x, by { ext, apply add_zero } } @[simp] lemma add_coeff' {x y : hahn_series Γ R} : (x + y).coeff = x.coeff + y.coeff := rfl lemma add_coeff {x y : hahn_series Γ R} {a : Γ} : (x + y).coeff a = x.coeff a + y.coeff a := rfl lemma support_add_subset {x y : hahn_series Γ R} : support (x + y) ⊆ support x ∪ support y := λ a ha, begin rw [mem_support, add_coeff] at ha, rw [set.mem_union, mem_support, mem_support], contrapose! ha, rw [ha.1, ha.2, add_zero], end lemma min_order_le_order_add {Γ} [linear_ordered_cancel_add_comm_monoid Γ] {x y : hahn_series Γ R} (hxy : x + y ≠ 0) : min x.order y.order ≤ (x + y).order := begin by_cases hx : x = 0, { simp [hx], }, by_cases hy : y = 0, { simp [hy], }, rw [order_of_ne hx, order_of_ne hy, order_of_ne hxy], refine le_trans _ (set.is_wf.min_le_min_of_subset support_add_subset), { exact x.is_wf_support.union y.is_wf_support }, { exact set.nonempty.mono (set.subset_union_left _ _) (support_nonempty_iff.2 hx) }, rw set.is_wf.min_union, end /-- `single` as an additive monoid/group homomorphism -/ @[simps] def single.add_monoid_hom (a : Γ) : R →+ (hahn_series Γ R) := { map_add' := λ x y, by { ext b, by_cases h : b = a; simp [h] }, ..single a } /-- `coeff g` as an additive monoid/group homomorphism -/ @[simps] def coeff.add_monoid_hom (g : Γ) : (hahn_series Γ R) →+ R := { to_fun := λ f, f.coeff g, map_zero' := zero_coeff, map_add' := λ x y, add_coeff } section domain variables {Γ' : Type*} [partial_order Γ'] lemma emb_domain_add (f : Γ ↪o Γ') (x y : hahn_series Γ R) : emb_domain f (x + y) = emb_domain f x + emb_domain f y := begin ext g, by_cases hg : g ∈ set.range f, { obtain ⟨a, rfl⟩ := hg, simp }, { simp [emb_domain_notin_range, hg] } end end domain end add_monoid instance [add_comm_monoid R] : add_comm_monoid (hahn_series Γ R) := { add_comm := λ x y, by { ext, apply add_comm } .. hahn_series.add_monoid } section add_group variable [add_group R] instance : add_group (hahn_series Γ R) := { neg := λ x, { coeff := λ a, - x.coeff a, is_pwo_support' := by { rw function.support_neg, exact x.is_pwo_support }, }, add_left_neg := λ x, by { ext, apply add_left_neg }, .. hahn_series.add_monoid } @[simp] lemma neg_coeff' {x : hahn_series Γ R} : (- x).coeff = - x.coeff := rfl lemma neg_coeff {x : hahn_series Γ R} {a : Γ} : (- x).coeff a = - x.coeff a := rfl @[simp] lemma support_neg {x : hahn_series Γ R} : (- x).support = x.support := by { ext, simp } @[simp] lemma sub_coeff' {x y : hahn_series Γ R} : (x - y).coeff = x.coeff - y.coeff := by { ext, simp [sub_eq_add_neg] } lemma sub_coeff {x y : hahn_series Γ R} {a : Γ} : (x - y).coeff a = x.coeff a - y.coeff a := by simp end add_group instance [add_comm_group R] : add_comm_group (hahn_series Γ R) := { .. hahn_series.add_comm_monoid, .. hahn_series.add_group } end addition section distrib_mul_action variables [partial_order Γ] {V : Type*} [monoid R] [add_monoid V] [distrib_mul_action R V] instance : has_smul R (hahn_series Γ V) := ⟨λ r x, { coeff := r • x.coeff, is_pwo_support' := x.is_pwo_support.mono (function.support_smul_subset_right r x.coeff) }⟩ @[simp] lemma smul_coeff {r : R} {x : hahn_series Γ V} {a : Γ} : (r • x).coeff a = r • (x.coeff a) := rfl instance : distrib_mul_action R (hahn_series Γ V) := { smul := (•), one_smul := λ _, by { ext, simp }, smul_zero := λ _, by { ext, simp }, smul_add := λ _ _ _, by { ext, simp [smul_add] }, mul_smul := λ _ _ _, by { ext, simp [mul_smul] } } variables {S : Type*} [monoid S] [distrib_mul_action S V] instance [has_smul R S] [is_scalar_tower R S V] : is_scalar_tower R S (hahn_series Γ V) := ⟨λ r s a, by { ext, simp }⟩ instance [smul_comm_class R S V] : smul_comm_class R S (hahn_series Γ V) := ⟨λ r s a, by { ext, simp [smul_comm] }⟩ end distrib_mul_action section module variables [partial_order Γ] [semiring R] {V : Type*} [add_comm_monoid V] [module R V] instance : module R (hahn_series Γ V) := { zero_smul := λ _, by { ext, simp }, add_smul := λ _ _ _, by { ext, simp [add_smul] }, .. hahn_series.distrib_mul_action } /-- `single` as a linear map -/ @[simps] def single.linear_map (a : Γ) : R →ₗ[R] (hahn_series Γ R) := { map_smul' := λ r s, by { ext b, by_cases h : b = a; simp [h] }, ..single.add_monoid_hom a } /-- `coeff g` as a linear map -/ @[simps] def coeff.linear_map (g : Γ) : (hahn_series Γ R) →ₗ[R] R := { map_smul' := λ r s, rfl, ..coeff.add_monoid_hom g } section domain variables {Γ' : Type*} [partial_order Γ'] lemma emb_domain_smul (f : Γ ↪o Γ') (r : R) (x : hahn_series Γ R) : emb_domain f (r • x) = r • emb_domain f x := begin ext g, by_cases hg : g ∈ set.range f, { obtain ⟨a, rfl⟩ := hg, simp }, { simp [emb_domain_notin_range, hg] } end /-- Extending the domain of Hahn series is a linear map. -/ @[simps] def emb_domain_linear_map (f : Γ ↪o Γ') : hahn_series Γ R →ₗ[R] hahn_series Γ' R := { to_fun := emb_domain f, map_add' := emb_domain_add f, map_smul' := emb_domain_smul f } end domain end module section multiplication variable [ordered_cancel_add_comm_monoid Γ] instance [has_zero R] [has_one R] : has_one (hahn_series Γ R) := ⟨single 0 1⟩ @[simp] lemma one_coeff [has_zero R] [has_one R] {a : Γ} : (1 : hahn_series Γ R).coeff a = if a = 0 then 1 else 0 := single_coeff @[simp] lemma single_zero_one [has_zero R] [has_one R] : (single 0 (1 : R)) = 1 := rfl @[simp] lemma support_one [mul_zero_one_class R] [nontrivial R] : support (1 : hahn_series Γ R) = {0} := support_single_of_ne one_ne_zero @[simp] lemma order_one [mul_zero_one_class R] : order (1 : hahn_series Γ R) = 0 := begin cases subsingleton_or_nontrivial R with h h; haveI := h, { rw [subsingleton.elim (1 : hahn_series Γ R) 0, order_zero] }, { exact order_single one_ne_zero } end instance [non_unital_non_assoc_semiring R] : has_mul (hahn_series Γ R) := { mul := λ x y, { coeff := λ a, ∑ ij in (add_antidiagonal x.is_pwo_support y.is_pwo_support a), x.coeff ij.fst * y.coeff ij.snd, is_pwo_support' := begin have h : {a : Γ | ∑ (ij : Γ × Γ) in add_antidiagonal x.is_pwo_support y.is_pwo_support a, x.coeff ij.fst * y.coeff ij.snd ≠ 0} ⊆ {a : Γ | (add_antidiagonal x.is_pwo_support y.is_pwo_support a).nonempty}, { intros a ha, contrapose! ha, simp [not_nonempty_iff_eq_empty.1 ha] }, exact is_pwo_support_add_antidiagonal.mono h, end, }, } @[simp] lemma mul_coeff [non_unital_non_assoc_semiring R] {x y : hahn_series Γ R} {a : Γ} : (x * y).coeff a = ∑ ij in (add_antidiagonal x.is_pwo_support y.is_pwo_support a), x.coeff ij.fst * y.coeff ij.snd := rfl lemma mul_coeff_right' [non_unital_non_assoc_semiring R] {x y : hahn_series Γ R} {a : Γ} {s : set Γ} (hs : s.is_pwo) (hys : y.support ⊆ s) : (x * y).coeff a = ∑ ij in (add_antidiagonal x.is_pwo_support hs a), x.coeff ij.fst * y.coeff ij.snd := begin rw mul_coeff, apply sum_subset_zero_on_sdiff (add_antidiagonal_mono_right hys) _ (λ _ _, rfl), intros b hb, simp only [not_and, not_not, mem_sdiff, mem_add_antidiagonal, ne.def, set.mem_set_of_eq, mem_support] at hb, rw [(hb.2 hb.1.1 hb.1.2.1), mul_zero] end lemma mul_coeff_left' [non_unital_non_assoc_semiring R] {x y : hahn_series Γ R} {a : Γ} {s : set Γ} (hs : s.is_pwo) (hxs : x.support ⊆ s) : (x * y).coeff a = ∑ ij in (add_antidiagonal hs y.is_pwo_support a), x.coeff ij.fst * y.coeff ij.snd := begin rw mul_coeff, apply sum_subset_zero_on_sdiff (add_antidiagonal_mono_left hxs) _ (λ _ _, rfl), intros b hb, simp only [not_and, not_not, mem_sdiff, mem_add_antidiagonal, ne.def, set.mem_set_of_eq, mem_support] at hb, rw [not_not.1 (λ con, hb.1.2.2 (hb.2 hb.1.1 con)), zero_mul], end instance [non_unital_non_assoc_semiring R] : distrib (hahn_series Γ R) := { left_distrib := λ x y z, begin ext a, have hwf := (y.is_pwo_support.union z.is_pwo_support), rw [mul_coeff_right' hwf, add_coeff, mul_coeff_right' hwf (set.subset_union_right _ _), mul_coeff_right' hwf (set.subset_union_left _ _)], { simp only [add_coeff, mul_add, sum_add_distrib] }, { intro b, simp only [add_coeff, ne.def, set.mem_union_eq, set.mem_set_of_eq, mem_support], contrapose!, intro h, rw [h.1, h.2, add_zero], } end, right_distrib := λ x y z, begin ext a, have hwf := (x.is_pwo_support.union y.is_pwo_support), rw [mul_coeff_left' hwf, add_coeff, mul_coeff_left' hwf (set.subset_union_right _ _), mul_coeff_left' hwf (set.subset_union_left _ _)], { simp only [add_coeff, add_mul, sum_add_distrib] }, { intro b, simp only [add_coeff, ne.def, set.mem_union_eq, set.mem_set_of_eq, mem_support], contrapose!, intro h, rw [h.1, h.2, add_zero], }, end, .. hahn_series.has_mul, .. hahn_series.has_add } lemma single_mul_coeff_add [non_unital_non_assoc_semiring R] {r : R} {x : hahn_series Γ R} {a : Γ} {b : Γ} : ((single b r) * x).coeff (a + b) = r * x.coeff a := begin by_cases hr : r = 0, { simp [hr] }, simp only [hr, smul_coeff, mul_coeff, support_single_of_ne, ne.def, not_false_iff, smul_eq_mul], by_cases hx : x.coeff a = 0, { simp only [hx, mul_zero], rw [sum_congr _ (λ _ _, rfl), sum_empty], ext ⟨a1, a2⟩, simp only [not_mem_empty, not_and, set.mem_singleton_iff, not_not, mem_add_antidiagonal, set.mem_set_of_eq, iff_false], rintro h1 rfl h2, rw add_comm at h1, rw ← add_right_cancel h1 at hx, exact h2 hx, }, transitivity ∑ (ij : Γ × Γ) in {(b, a)}, (single b r).coeff ij.fst * x.coeff ij.snd, { apply sum_congr _ (λ _ _, rfl), ext ⟨a1, a2⟩, simp only [set.mem_singleton_iff, prod.mk.inj_iff, mem_add_antidiagonal, mem_singleton, set.mem_set_of_eq], split, { rintro ⟨h1, rfl, h2⟩, rw add_comm at h1, refine ⟨rfl, add_right_cancel h1⟩ }, { rintro ⟨rfl, rfl⟩, refine ⟨add_comm _ _, _⟩, simp [hx] } }, { simp } end lemma mul_single_coeff_add [non_unital_non_assoc_semiring R] {r : R} {x : hahn_series Γ R} {a : Γ} {b : Γ} : (x * (single b r)).coeff (a + b) = x.coeff a * r := begin by_cases hr : r = 0, { simp [hr] }, simp only [hr, smul_coeff, mul_coeff, support_single_of_ne, ne.def, not_false_iff, smul_eq_mul], by_cases hx : x.coeff a = 0, { simp only [hx, zero_mul], rw [sum_congr _ (λ _ _, rfl), sum_empty], ext ⟨a1, a2⟩, simp only [not_mem_empty, not_and, set.mem_singleton_iff, not_not, mem_add_antidiagonal, set.mem_set_of_eq, iff_false], rintro h1 h2 rfl, rw ← add_right_cancel h1 at hx, exact h2 hx, }, transitivity ∑ (ij : Γ × Γ) in {(a,b)}, x.coeff ij.fst * (single b r).coeff ij.snd, { apply sum_congr _ (λ _ _, rfl), ext ⟨a1, a2⟩, simp only [set.mem_singleton_iff, prod.mk.inj_iff, mem_add_antidiagonal, mem_singleton, set.mem_set_of_eq], split, { rintro ⟨h1, h2, rfl⟩, refine ⟨add_right_cancel h1, rfl⟩ }, { rintro ⟨rfl, rfl⟩, simp [hx] } }, { simp } end @[simp] lemma mul_single_zero_coeff [non_unital_non_assoc_semiring R] {r : R} {x : hahn_series Γ R} {a : Γ} : (x * (single 0 r)).coeff a = x.coeff a * r := by rw [← add_zero a, mul_single_coeff_add, add_zero] lemma single_zero_mul_coeff [non_unital_non_assoc_semiring R] {r : R} {x : hahn_series Γ R} {a : Γ} : ((single 0 r) * x).coeff a = r * x.coeff a := by rw [← add_zero a, single_mul_coeff_add, add_zero] @[simp] lemma single_zero_mul_eq_smul [semiring R] {r : R} {x : hahn_series Γ R} : (single 0 r) * x = r • x := by { ext, exact single_zero_mul_coeff } theorem support_mul_subset_add_support [non_unital_non_assoc_semiring R] {x y : hahn_series Γ R} : support (x * y) ⊆ support x + support y := begin apply set.subset.trans (λ x hx, _) support_add_antidiagonal_subset_add, { exact x.is_pwo_support }, { exact y.is_pwo_support }, contrapose! hx, simp only [not_nonempty_iff_eq_empty, ne.def, set.mem_set_of_eq] at hx, simp [hx], end lemma mul_coeff_order_add_order {Γ} [linear_ordered_cancel_add_comm_monoid Γ] [non_unital_non_assoc_semiring R] (x y : hahn_series Γ R) : (x * y).coeff (x.order + y.order) = x.coeff x.order * y.coeff y.order := begin by_cases hx : x = 0, { simp [hx], }, by_cases hy : y = 0, { simp [hy], }, rw [order_of_ne hx, order_of_ne hy, mul_coeff, finset.add_antidiagonal_min_add_min, finset.sum_singleton], end private lemma mul_assoc' [non_unital_semiring R] (x y z : hahn_series Γ R) : x * y * z = x * (y * z) := begin ext b, rw [mul_coeff_left' (x.is_pwo_support.add y.is_pwo_support) support_mul_subset_add_support, mul_coeff_right' (y.is_pwo_support.add z.is_pwo_support) support_mul_subset_add_support], simp only [mul_coeff, add_coeff, sum_mul, mul_sum, sum_sigma'], refine sum_bij_ne_zero (λ a has ha0, ⟨⟨a.2.1, a.2.2 + a.1.2⟩, ⟨a.2.2, a.1.2⟩⟩) _ _ _ _, { rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H1 H2, simp only [true_and, set.image2_add, eq_self_iff_true, mem_add_antidiagonal, ne.def, set.image_prod, mem_sigma, set.mem_set_of_eq] at H1 H2 ⊢, obtain ⟨⟨rfl, ⟨H3, nz⟩⟩, ⟨rfl, nx, ny⟩⟩ := H1, refine ⟨⟨(add_assoc _ _ _).symm, nx, set.add_mem_add ny nz⟩, ny, nz⟩ }, { rintros ⟨⟨i1,j1⟩, ⟨k1,l1⟩⟩ ⟨⟨i2,j2⟩, ⟨k2,l2⟩⟩ H1 H2 H3 H4 H5, simp only [set.image2_add, prod.mk.inj_iff, mem_add_antidiagonal, ne.def, set.image_prod, mem_sigma, set.mem_set_of_eq, heq_iff_eq] at H1 H3 H5, obtain ⟨⟨rfl, H⟩, rfl, rfl⟩ := H5, simp only [and_true, prod.mk.inj_iff, eq_self_iff_true, heq_iff_eq], exact add_right_cancel (H1.1.1.trans H3.1.1.symm) }, { rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H1 H2, simp only [exists_prop, set.image2_add, prod.mk.inj_iff, mem_add_antidiagonal, sigma.exists, ne.def, set.image_prod, mem_sigma, set.mem_set_of_eq, heq_iff_eq, prod.exists] at H1 H2 ⊢, obtain ⟨⟨rfl, nx, H⟩, rfl, ny, nz⟩ := H1, exact ⟨i + k, l, i, k, ⟨⟨add_assoc _ _ _, set.add_mem_add nx ny, nz⟩, rfl, nx, ny⟩, λ con, H2 ((mul_assoc _ _ _).symm.trans con), ⟨rfl, rfl⟩, rfl, rfl⟩ }, { rintros ⟨⟨i,j⟩, ⟨k,l⟩⟩ H1 H2, simp [mul_assoc], } end instance [non_unital_non_assoc_semiring R] : non_unital_non_assoc_semiring (hahn_series Γ R) := { zero := 0, add := (+), mul := (*), zero_mul := λ _, by { ext, simp }, mul_zero := λ _, by { ext, simp }, .. hahn_series.add_comm_monoid, .. hahn_series.distrib } instance [non_unital_semiring R] : non_unital_semiring (hahn_series Γ R) := { zero := 0, add := (+), mul := (*), mul_assoc := mul_assoc', .. hahn_series.non_unital_non_assoc_semiring } instance [non_assoc_semiring R] : non_assoc_semiring (hahn_series Γ R) := { zero := 0, one := 1, add := (+), mul := (*), one_mul := λ x, by { ext, exact single_zero_mul_coeff.trans (one_mul _) }, mul_one := λ x, by { ext, exact mul_single_zero_coeff.trans (mul_one _) }, .. add_monoid_with_one.unary, .. hahn_series.non_unital_non_assoc_semiring } instance [semiring R] : semiring (hahn_series Γ R) := { zero := 0, one := 1, add := (+), mul := (*), .. hahn_series.non_assoc_semiring, .. hahn_series.non_unital_semiring } instance [non_unital_comm_semiring R] : non_unital_comm_semiring (hahn_series Γ R) := { mul_comm := λ x y, begin ext, simp_rw [mul_coeff, mul_comm], refine sum_bij (λ a ha, ⟨a.2, a.1⟩) _ (λ a ha, by simp) _ _, { intros a ha, simp only [mem_add_antidiagonal, ne.def, set.mem_set_of_eq] at ha ⊢, obtain ⟨h1, h2, h3⟩ := ha, refine ⟨_, h3, h2⟩, rw [add_comm, h1], }, { rintros ⟨a1, a2⟩ ⟨b1, b2⟩ ha hb hab, rw prod.ext_iff at *, refine ⟨hab.2, hab.1⟩, }, { intros a ha, refine ⟨a.swap, _, by simp⟩, simp only [prod.fst_swap, mem_add_antidiagonal, prod.snd_swap, ne.def, set.mem_set_of_eq] at ha ⊢, exact ⟨(add_comm _ _).trans ha.1, ha.2.2, ha.2.1⟩ } end, .. hahn_series.non_unital_semiring } instance [comm_semiring R] : comm_semiring (hahn_series Γ R) := { .. hahn_series.non_unital_comm_semiring, .. hahn_series.semiring } instance [non_unital_non_assoc_ring R] : non_unital_non_assoc_ring (hahn_series Γ R) := { .. hahn_series.non_unital_non_assoc_semiring, .. hahn_series.add_group } instance [non_unital_ring R] : non_unital_ring (hahn_series Γ R) := { .. hahn_series.non_unital_non_assoc_ring, .. hahn_series.non_unital_semiring } instance [non_assoc_ring R] : non_assoc_ring (hahn_series Γ R) := { .. hahn_series.non_unital_non_assoc_ring, .. hahn_series.non_assoc_semiring } instance [ring R] : ring (hahn_series Γ R) := { .. hahn_series.semiring, .. hahn_series.add_comm_group } instance [non_unital_comm_ring R] : non_unital_comm_ring (hahn_series Γ R) := { .. hahn_series.non_unital_comm_semiring, .. hahn_series.non_unital_ring } instance [comm_ring R] : comm_ring (hahn_series Γ R) := { .. hahn_series.comm_semiring, .. hahn_series.ring } instance {Γ} [linear_ordered_cancel_add_comm_monoid Γ] [non_unital_non_assoc_semiring R] [no_zero_divisors R] : no_zero_divisors (hahn_series Γ R) := { eq_zero_or_eq_zero_of_mul_eq_zero := λ x y xy, begin by_cases hx : x = 0, { left, exact hx }, right, contrapose! xy, rw [hahn_series.ext_iff, function.funext_iff, not_forall], refine ⟨x.order + y.order, _⟩, rw [mul_coeff_order_add_order x y, zero_coeff, mul_eq_zero], simp [coeff_order_ne_zero, hx, xy], end } instance {Γ} [linear_ordered_cancel_add_comm_monoid Γ] [ring R] [is_domain R] : is_domain (hahn_series Γ R) := { .. hahn_series.no_zero_divisors, .. hahn_series.nontrivial, .. hahn_series.ring } @[simp] lemma order_mul {Γ} [linear_ordered_cancel_add_comm_monoid Γ] [non_unital_non_assoc_semiring R] [no_zero_divisors R] {x y : hahn_series Γ R} (hx : x ≠ 0) (hy : y ≠ 0) : (x * y).order = x.order + y.order := begin apply le_antisymm, { apply order_le_of_coeff_ne_zero, rw [mul_coeff_order_add_order x y], exact mul_ne_zero (coeff_order_ne_zero hx) (coeff_order_ne_zero hy) }, { rw [order_of_ne hx, order_of_ne hy, order_of_ne (mul_ne_zero hx hy), ← set.is_wf.min_add], exact set.is_wf.min_le_min_of_subset (support_mul_subset_add_support) }, end @[simp] lemma order_pow {Γ} [linear_ordered_cancel_add_comm_monoid Γ] [semiring R] [no_zero_divisors R] (x : hahn_series Γ R) (n : ℕ) : (x ^ n).order = n • x.order := begin induction n with h IH, { simp }, rcases eq_or_ne x 0 with rfl|hx, { simp }, rw [pow_succ', order_mul (pow_ne_zero _ hx) hx, succ_nsmul', IH] end section non_unital_non_assoc_semiring variables [non_unital_non_assoc_semiring R] @[simp] lemma single_mul_single {a b : Γ} {r s : R} : single a r * single b s = single (a + b) (r * s) := begin ext x, by_cases h : x = a + b, { rw [h, mul_single_coeff_add], simp }, { rw [single_coeff_of_ne h, mul_coeff, sum_eq_zero], rintros ⟨y1, y2⟩ hy, obtain ⟨rfl, hy1, hy2⟩ := mem_add_antidiagonal.1 hy, rw [eq_of_mem_support_single hy1, eq_of_mem_support_single hy2] at h, exact (h rfl).elim } end end non_unital_non_assoc_semiring section non_assoc_semiring variables [non_assoc_semiring R] /-- `C a` is the constant Hahn Series `a`. `C` is provided as a ring homomorphism. -/ @[simps] def C : R →+* (hahn_series Γ R) := { to_fun := single 0, map_zero' := single_eq_zero, map_one' := rfl, map_add' := λ x y, by { ext a, by_cases h : a = 0; simp [h] }, map_mul' := λ x y, by rw [single_mul_single, zero_add] } @[simp] lemma C_zero : C (0 : R) = (0 : hahn_series Γ R) := C.map_zero @[simp] lemma C_one : C (1 : R) = (1 : hahn_series Γ R) := C.map_one lemma C_injective : function.injective (C : R → hahn_series Γ R) := begin intros r s rs, rw [ext_iff, function.funext_iff] at rs, have h := rs 0, rwa [C_apply, single_coeff_same, C_apply, single_coeff_same] at h, end lemma C_ne_zero {r : R} (h : r ≠ 0) : (C r : hahn_series Γ R) ≠ 0 := begin contrapose! h, rw ← C_zero at h, exact C_injective h, end lemma order_C {r : R} : order (C r : hahn_series Γ R) = 0 := begin by_cases h : r = 0, { rw [h, C_zero, order_zero] }, { exact order_single h } end end non_assoc_semiring section semiring variables [semiring R] lemma C_mul_eq_smul {r : R} {x : hahn_series Γ R} : C r * x = r • x := single_zero_mul_eq_smul end semiring section domain variables {Γ' : Type*} [ordered_cancel_add_comm_monoid Γ'] lemma emb_domain_mul [non_unital_non_assoc_semiring R] (f : Γ ↪o Γ') (hf : ∀ x y, f (x + y) = f x + f y) (x y : hahn_series Γ R) : emb_domain f (x * y) = emb_domain f x * emb_domain f y := begin ext g, by_cases hg : g ∈ set.range f, { obtain ⟨g, rfl⟩ := hg, simp only [mul_coeff, emb_domain_coeff], transitivity ∑ ij in (add_antidiagonal x.is_pwo_support y.is_pwo_support g).map (function.embedding.prod_map f.to_embedding f.to_embedding), (emb_domain f x).coeff (ij.1) * (emb_domain f y).coeff (ij.2), { simp }, apply sum_subset, { rintro ⟨i, j⟩ hij, simp only [exists_prop, mem_map, prod.mk.inj_iff, mem_add_antidiagonal, ne.def, function.embedding.coe_prod_map, mem_support, prod.exists] at hij, obtain ⟨i, j, ⟨rfl, hx, hy⟩, rfl, rfl⟩ := hij, simp [hx, hy, hf], }, { rintro ⟨_, _⟩ h1 h2, contrapose! h2, obtain ⟨i, hi, rfl⟩ := support_emb_domain_subset (ne_zero_and_ne_zero_of_mul h2).1, obtain ⟨j, hj, rfl⟩ := support_emb_domain_subset (ne_zero_and_ne_zero_of_mul h2).2, simp only [exists_prop, mem_map, prod.mk.inj_iff, mem_add_antidiagonal, ne.def, function.embedding.coe_prod_map, mem_support, prod.exists], simp only [mem_add_antidiagonal, emb_domain_coeff, ne.def, mem_support, ← hf] at h1, exact ⟨i, j, ⟨f.injective h1.1, h1.2⟩, rfl⟩, } }, { rw [emb_domain_notin_range hg, eq_comm], contrapose! hg, obtain ⟨_, _, hi, hj, rfl⟩ := support_mul_subset_add_support ((mem_support _ _).2 hg), obtain ⟨i, hi, rfl⟩ := support_emb_domain_subset hi, obtain ⟨j, hj, rfl⟩ := support_emb_domain_subset hj, refine ⟨i + j, hf i j⟩, } end lemma emb_domain_one [non_assoc_semiring R] (f : Γ ↪o Γ') (hf : f 0 = 0): emb_domain f (1 : hahn_series Γ R) = (1 : hahn_series Γ' R) := emb_domain_single.trans $ hf.symm ▸ rfl /-- Extending the domain of Hahn series is a ring homomorphism. -/ @[simps] def emb_domain_ring_hom [non_assoc_semiring R] (f : Γ →+ Γ') (hfi : function.injective f) (hf : ∀ g g' : Γ, f g ≤ f g' ↔ g ≤ g') : hahn_series Γ R →+* hahn_series Γ' R := { to_fun := emb_domain ⟨⟨f, hfi⟩, hf⟩, map_one' := emb_domain_one _ f.map_zero, map_mul' := emb_domain_mul _ f.map_add, map_zero' := emb_domain_zero, map_add' := emb_domain_add _} lemma emb_domain_ring_hom_C [non_assoc_semiring R] {f : Γ →+ Γ'} {hfi : function.injective f} {hf : ∀ g g' : Γ, f g ≤ f g' ↔ g ≤ g'} {r : R} : emb_domain_ring_hom f hfi hf (C r) = C r := emb_domain_single.trans (by simp) end domain section algebra variables [comm_semiring R] {A : Type*} [semiring A] [algebra R A] instance : algebra R (hahn_series Γ A) := { to_ring_hom := C.comp (algebra_map R A), smul_def' := λ r x, by { ext, simp }, commutes' := λ r x, by { ext, simp only [smul_coeff, single_zero_mul_eq_smul, ring_hom.coe_comp, ring_hom.to_fun_eq_coe, C_apply, function.comp_app, algebra_map_smul, mul_single_zero_coeff], rw [← algebra.commutes, algebra.smul_def], }, } theorem C_eq_algebra_map : C = (algebra_map R (hahn_series Γ R)) := rfl theorem algebra_map_apply {r : R} : algebra_map R (hahn_series Γ A) r = C (algebra_map R A r) := rfl instance [nontrivial Γ] [nontrivial R] : nontrivial (subalgebra R (hahn_series Γ R)) := ⟨⟨⊥, ⊤, begin rw [ne.def, set_like.ext_iff, not_forall], obtain ⟨a, ha⟩ := exists_ne (0 : Γ), refine ⟨single a 1, _⟩, simp only [algebra.mem_bot, not_exists, set.mem_range, iff_true, algebra.mem_top], intros x, rw [ext_iff, function.funext_iff, not_forall], refine ⟨a, _⟩, rw [single_coeff_same, algebra_map_apply, C_apply, single_coeff_of_ne ha], exact zero_ne_one end⟩⟩ section domain variables {Γ' : Type*} [ordered_cancel_add_comm_monoid Γ'] /-- Extending the domain of Hahn series is an algebra homomorphism. -/ @[simps] def emb_domain_alg_hom (f : Γ →+ Γ') (hfi : function.injective f) (hf : ∀ g g' : Γ, f g ≤ f g' ↔ g ≤ g') : hahn_series Γ A →ₐ[R] hahn_series Γ' A := { commutes' := λ r, emb_domain_ring_hom_C, .. emb_domain_ring_hom f hfi hf } end domain end algebra end multiplication section semiring variables [semiring R] /-- The ring `hahn_series ℕ R` is isomorphic to `power_series R`. -/ @[simps] def to_power_series : (hahn_series ℕ R) ≃+* power_series R := { to_fun := λ f, power_series.mk f.coeff, inv_fun := λ f, ⟨λ n, power_series.coeff R n f, (nat.lt_wf.is_wf _).is_pwo⟩, left_inv := λ f, by { ext, simp }, right_inv := λ f, by { ext, simp }, map_add' := λ f g, by { ext, simp }, map_mul' := λ f g, begin ext n, simp only [power_series.coeff_mul, power_series.coeff_mk, mul_coeff, is_pwo_support], classical, refine sum_filter_ne_zero.symm.trans ((sum_congr _ (λ _ _, rfl)).trans sum_filter_ne_zero), ext m, simp only [nat.mem_antidiagonal, and.congr_left_iff, mem_add_antidiagonal, ne.def, and_iff_left_iff_imp, mem_filter, mem_support], intros h1 h2, contrapose h1, rw ← decidable.or_iff_not_and_not at h1, cases h1; simp [h1] end } lemma coeff_to_power_series {f : hahn_series ℕ R} {n : ℕ} : power_series.coeff R n f.to_power_series = f.coeff n := power_series.coeff_mk _ _ lemma coeff_to_power_series_symm {f : power_series R} {n : ℕ} : (hahn_series.to_power_series.symm f).coeff n = power_series.coeff R n f := rfl variables (Γ) (R) [ordered_semiring Γ] [nontrivial Γ] /-- Casts a power series as a Hahn series with coefficients from an `ordered_semiring`. -/ def of_power_series : (power_series R) →+* hahn_series Γ R := (hahn_series.emb_domain_ring_hom (nat.cast_add_monoid_hom Γ) nat.strict_mono_cast.injective (λ _ _, nat.cast_le)).comp (ring_equiv.to_ring_hom to_power_series.symm) variables {Γ} {R} lemma of_power_series_injective : function.injective (of_power_series Γ R) := emb_domain_injective.comp to_power_series.symm.injective @[simp] lemma of_power_series_apply (x : power_series R) : of_power_series Γ R x = hahn_series.emb_domain ⟨⟨(coe : ℕ → Γ), nat.strict_mono_cast.injective⟩, λ a b, begin simp only [function.embedding.coe_fn_mk], exact nat.cast_le, end⟩ (to_power_series.symm x) := rfl lemma of_power_series_apply_coeff (x : power_series R) (n : ℕ) : (of_power_series Γ R x).coeff n = power_series.coeff R n x := by simp @[simp] lemma of_power_series_C (r : R) : of_power_series Γ R (power_series.C R r) = hahn_series.C r := begin ext n, simp only [C, single_coeff, of_power_series_apply, ring_hom.coe_mk], split_ifs with hn hn, { subst hn, convert @emb_domain_coeff _ _ _ _ _ _ _ _ 0; simp }, { rw emb_domain_notin_image_support, simp only [not_exists, set.mem_image, to_power_series_symm_apply_coeff, mem_support, power_series.coeff_C], intro, simp [ne.symm hn] {contextual := tt} } end @[simp] lemma of_power_series_X : of_power_series Γ R power_series.X = single 1 1 := begin ext n, simp only [single_coeff, of_power_series_apply, ring_hom.coe_mk], split_ifs with hn hn, { rw hn, convert @emb_domain_coeff _ _ _ _ _ _ _ _ 1; simp }, { rw emb_domain_notin_image_support, simp only [not_exists, set.mem_image, to_power_series_symm_apply_coeff, mem_support, power_series.coeff_X], intro, simp [ne.symm hn] {contextual := tt} } end @[simp] lemma of_power_series_X_pow {R} [comm_semiring R] (n : ℕ) : of_power_series Γ R (power_series.X ^ n) = single (n : Γ) 1 := begin rw ring_hom.map_pow, induction n with n ih, { simp, refl }, rw [pow_succ, ih, of_power_series_X, mul_comm, single_mul_single, one_mul, nat.cast_succ] end -- Lemmas about converting hahn_series over fintype to and from mv_power_series /-- The ring `hahn_series (σ →₀ ℕ) R` is isomorphic to `mv_power_series σ R` for a `fintype` `σ`. We take the index set of the hahn series to be `finsupp` rather than `pi`, even though we assume `fintype σ` as this is more natural for alignment with `mv_power_series`. After importing `algebra.order.pi` the ring `hahn_series (σ → ℕ) R` could be constructed instead. -/ @[simps] def to_mv_power_series {σ : Type*} [fintype σ] : hahn_series (σ →₀ ℕ) R ≃+* mv_power_series σ R := { to_fun := λ f, f.coeff, inv_fun := λ f, ⟨(f : (σ →₀ ℕ) → R), finsupp.is_pwo _⟩, left_inv := λ f, by { ext, simp }, right_inv := λ f, by { ext, simp }, map_add' := λ f g, by { ext, simp }, map_mul' := λ f g, begin ext n, simp only [mv_power_series.coeff_mul], classical, change (f * g).coeff n = _, simp_rw [mul_coeff], refine sum_filter_ne_zero.symm.trans ((sum_congr _ (λ _ _, rfl)).trans sum_filter_ne_zero), ext m, simp only [and.congr_left_iff, mem_add_antidiagonal, ne.def, and_iff_left_iff_imp, mem_filter, mem_support, finsupp.mem_antidiagonal], intros h1 h2, contrapose h1, rw ← decidable.or_iff_not_and_not at h1, cases h1; simp [h1], end } variables {σ : Type*} [fintype σ] lemma coeff_to_mv_power_series {f : hahn_series (σ →₀ ℕ) R} {n : σ →₀ ℕ} : mv_power_series.coeff R n f.to_mv_power_series = f.coeff n := rfl lemma coeff_to_mv_power_series_symm {f : mv_power_series σ R} {n : σ →₀ ℕ} : (hahn_series.to_mv_power_series.symm f).coeff n = mv_power_series.coeff R n f := rfl end semiring section algebra variables (R) [comm_semiring R] {A : Type*} [semiring A] [algebra R A] /-- The `R`-algebra `hahn_series ℕ A` is isomorphic to `power_series A`. -/ @[simps] def to_power_series_alg : (hahn_series ℕ A) ≃ₐ[R] power_series A := { commutes' := λ r, begin ext n, simp only [algebra_map_apply, power_series.algebra_map_apply, ring_equiv.to_fun_eq_coe, C_apply, coeff_to_power_series], cases n, { simp only [power_series.coeff_zero_eq_constant_coeff, single_coeff_same], refl }, { simp only [n.succ_ne_zero, ne.def, not_false_iff, single_coeff_of_ne], rw [power_series.coeff_C, if_neg n.succ_ne_zero] } end, .. to_power_series } variables (Γ) (R) [ordered_semiring Γ] [nontrivial Γ] /-- Casting a power series as a Hahn series with coefficients from an `ordered_semiring` is an algebra homomorphism. -/ @[simps] def of_power_series_alg : (power_series A) →ₐ[R] hahn_series Γ A := (hahn_series.emb_domain_alg_hom (nat.cast_add_monoid_hom Γ) nat.strict_mono_cast.injective (λ _ _, nat.cast_le)).comp (alg_equiv.to_alg_hom (to_power_series_alg R).symm) instance power_series_algebra {S : Type*} [comm_semiring S] [algebra S (power_series R)] : algebra S (hahn_series Γ R) := ring_hom.to_algebra $ (of_power_series Γ R).comp (algebra_map S (power_series R)) variables {R} {S : Type*} [comm_semiring S] [algebra S (power_series R)] lemma algebra_map_apply' (x : S) : algebra_map S (hahn_series Γ R) x = of_power_series Γ R (algebra_map S (power_series R) x) := rfl @[simp] lemma _root_.polynomial.algebra_map_hahn_series_apply (f : R[X]) : algebra_map R[X] (hahn_series Γ R) f = of_power_series Γ R f := rfl lemma _root_.polynomial.algebra_map_hahn_series_injective : function.injective (algebra_map R[X] (hahn_series Γ R)) := of_power_series_injective.comp (polynomial.coe_injective R) end algebra section valuation variables (Γ R) [linear_ordered_add_comm_group Γ] [ring R] [is_domain R] /-- The additive valuation on `hahn_series Γ R`, returning the smallest index at which a Hahn Series has a nonzero coefficient, or `⊤` for the 0 series. -/ def add_val : add_valuation (hahn_series Γ R) (with_top Γ) := add_valuation.of (λ x, if x = (0 : hahn_series Γ R) then (⊤ : with_top Γ) else x.order) (if_pos rfl) ((if_neg one_ne_zero).trans (by simp [order_of_ne])) (λ x y, begin by_cases hx : x = 0, { by_cases hy : y = 0; { simp [hx, hy] } }, { by_cases hy : y = 0, { simp [hx, hy] }, { simp only [hx, hy, support_nonempty_iff, if_neg, not_false_iff, is_wf_support], by_cases hxy : x + y = 0, { simp [hxy] }, rw [if_neg hxy, ← with_top.coe_min, with_top.coe_le_coe], exact min_order_le_order_add hxy } }, end) (λ x y, begin by_cases hx : x = 0, { simp [hx] }, by_cases hy : y = 0, { simp [hy] }, rw [if_neg hx, if_neg hy, if_neg (mul_ne_zero hx hy), ← with_top.coe_add, with_top.coe_eq_coe, order_mul hx hy], end) variables {Γ} {R} lemma add_val_apply {x : hahn_series Γ R} : add_val Γ R x = if x = (0 : hahn_series Γ R) then (⊤ : with_top Γ) else x.order := add_valuation.of_apply _ @[simp] lemma add_val_apply_of_ne {x : hahn_series Γ R} (hx : x ≠ 0) : add_val Γ R x = x.order := if_neg hx lemma add_val_le_of_coeff_ne_zero {x : hahn_series Γ R} {g : Γ} (h : x.coeff g ≠ 0) : add_val Γ R x ≤ g := begin rw [add_val_apply_of_ne (ne_zero_of_coeff_ne_zero h), with_top.coe_le_coe], exact order_le_of_coeff_ne_zero h end end valuation lemma is_pwo_Union_support_powers [linear_ordered_add_comm_group Γ] [ring R] [is_domain R] {x : hahn_series Γ R} (hx : 0 < add_val Γ R x) : (⋃ n : ℕ, (x ^ n).support).is_pwo := begin apply (x.is_wf_support.is_pwo.add_submonoid_closure (λ g hg, _)).mono _, { exact with_top.coe_le_coe.1 (le_trans (le_of_lt hx) (add_val_le_of_coeff_ne_zero hg)) }, refine set.Union_subset (λ n, _), induction n with n ih; intros g hn, { simp only [exists_prop, and_true, set.mem_singleton_iff, set.set_of_eq_eq_singleton, mem_support, ite_eq_right_iff, ne.def, not_false_iff, one_ne_zero, pow_zero, not_forall, one_coeff] at hn, rw [hn, set_like.mem_coe], exact add_submonoid.zero_mem _ }, { obtain ⟨i, j, hi, hj, rfl⟩ := support_mul_subset_add_support hn, exact set_like.mem_coe.2 (add_submonoid.add_mem _ (add_submonoid.subset_closure hi) (ih hj)) } end section variables (Γ) (R) [partial_order Γ] [add_comm_monoid R] /-- An infinite family of Hahn series which has a formal coefficient-wise sum. The requirements for this are that the union of the supports of the series is well-founded, and that only finitely many series are nonzero at any given coefficient. -/ structure summable_family (α : Type*) := (to_fun : α → hahn_series Γ R) (is_pwo_Union_support' : set.is_pwo (⋃ (a : α), (to_fun a).support)) (finite_co_support' : ∀ (g : Γ), ({a | (to_fun a).coeff g ≠ 0}).finite) end namespace summable_family section add_comm_monoid variables [partial_order Γ] [add_comm_monoid R] {α : Type*} instance : has_coe_to_fun (summable_family Γ R α) (λ _, α → hahn_series Γ R):= ⟨to_fun⟩ lemma is_pwo_Union_support (s : summable_family Γ R α) : set.is_pwo (⋃ (a : α), (s a).support) := s.is_pwo_Union_support' lemma finite_co_support (s : summable_family Γ R α) (g : Γ) : (function.support (λ a, (s a).coeff g)).finite := s.finite_co_support' g lemma coe_injective : @function.injective (summable_family Γ R α) (α → hahn_series Γ R) coe_fn | ⟨f1, hU1, hf1⟩ ⟨f2, hU2, hf2⟩ h := begin change f1 = f2 at h, subst h, end @[ext] lemma ext {s t : summable_family Γ R α} (h : ∀ (a : α), s a = t a) : s = t := coe_injective $ funext h instance : has_add (summable_family Γ R α) := ⟨λ x y, { to_fun := x + y, is_pwo_Union_support' := (x.is_pwo_Union_support.union y.is_pwo_Union_support).mono (begin rw ← set.Union_union_distrib, exact set.Union_mono (λ a, support_add_subset) end), finite_co_support' := λ g, ((x.finite_co_support g).union (y.finite_co_support g)).subset begin intros a ha, change (x a).coeff g + (y a).coeff g ≠ 0 at ha, rw [set.mem_union, function.mem_support, function.mem_support], contrapose! ha, rw [ha.1, ha.2, add_zero] end }⟩ instance : has_zero (summable_family Γ R α) := ⟨⟨0, by simp, by simp⟩⟩ instance : inhabited (summable_family Γ R α) := ⟨0⟩ @[simp] lemma coe_add {s t : summable_family Γ R α} : ⇑(s + t) = s + t := rfl lemma add_apply {s t : summable_family Γ R α} {a : α} : (s + t) a = s a + t a := rfl @[simp] lemma coe_zero : ((0 : summable_family Γ R α) : α → hahn_series Γ R) = 0 := rfl lemma zero_apply {a : α} : (0 : summable_family Γ R α) a = 0 := rfl instance : add_comm_monoid (summable_family Γ R α) := { add := (+), zero := 0, zero_add := λ s, by { ext, apply zero_add }, add_zero := λ s, by { ext, apply add_zero }, add_comm := λ s t, by { ext, apply add_comm }, add_assoc := λ r s t, by { ext, apply add_assoc } } /-- The infinite sum of a `summable_family` of Hahn series. -/ def hsum (s : summable_family Γ R α) : hahn_series Γ R := { coeff := λ g, ∑ᶠ i, (s i).coeff g, is_pwo_support' := s.is_pwo_Union_support.mono (λ g, begin contrapose, rw [set.mem_Union, not_exists, function.mem_support, not_not], simp_rw [mem_support, not_not], intro h, rw [finsum_congr h, finsum_zero], end) } @[simp] lemma hsum_coeff {s : summable_family Γ R α} {g : Γ} : s.hsum.coeff g = ∑ᶠ i, (s i).coeff g := rfl lemma support_hsum_subset {s : summable_family Γ R α} : s.hsum.support ⊆ ⋃ (a : α), (s a).support := λ g hg, begin rw [mem_support, hsum_coeff, finsum_eq_sum _ (s.finite_co_support _)] at hg, obtain ⟨a, h1, h2⟩ := exists_ne_zero_of_sum_ne_zero hg, rw [set.mem_Union], exact ⟨a, h2⟩, end @[simp] lemma hsum_add {s t : summable_family Γ R α} : (s + t).hsum = s.hsum + t.hsum := begin ext g, simp only [hsum_coeff, add_coeff, add_apply], exact finsum_add_distrib (s.finite_co_support _) (t.finite_co_support _) end end add_comm_monoid section add_comm_group variables [partial_order Γ] [add_comm_group R] {α : Type*} {s t : summable_family Γ R α} {a : α} instance : add_comm_group (summable_family Γ R α) := { neg := λ s, { to_fun := λ a, - s a, is_pwo_Union_support' := by { simp_rw [support_neg], exact s.is_pwo_Union_support' }, finite_co_support' := λ g, by { simp only [neg_coeff', pi.neg_apply, ne.def, neg_eq_zero], exact s.finite_co_support g } }, add_left_neg := λ a, by { ext, apply add_left_neg }, .. summable_family.add_comm_monoid } @[simp] lemma coe_neg : ⇑(-s) = - s := rfl lemma neg_apply : (-s) a = - (s a) := rfl @[simp] lemma coe_sub : ⇑(s - t) = s - t := rfl lemma sub_apply : (s - t) a = s a - t a := rfl end add_comm_group section semiring variables [ordered_cancel_add_comm_monoid Γ] [semiring R] {α : Type*} instance : has_smul (hahn_series Γ R) (summable_family Γ R α) := { smul := λ x s, { to_fun := λ a, x * (s a), is_pwo_Union_support' := begin apply (x.is_pwo_support.add s.is_pwo_Union_support).mono, refine set.subset.trans (set.Union_mono (λ a, support_mul_subset_add_support)) _, intro g, simp only [set.mem_Union, exists_imp_distrib], exact λ a ha, (set.add_subset_add (set.subset.refl _) (set.subset_Union _ a)) ha, end, finite_co_support' := λ g, begin refine ((add_antidiagonal x.is_pwo_support s.is_pwo_Union_support g).finite_to_set.bUnion' (λ ij hij, _)).subset (λ a ha, _), { exact λ ij hij, function.support (λ a, (s a).coeff ij.2) }, { apply s.finite_co_support }, { obtain ⟨i, j, hi, hj, rfl⟩ := support_mul_subset_add_support ha, simp only [exists_prop, set.mem_Union, mem_add_antidiagonal, mul_coeff, ne.def, mem_support, is_pwo_support, prod.exists], refine ⟨i, j, mem_coe.2 (mem_add_antidiagonal.2 ⟨rfl, hi, set.mem_Union.2 ⟨a, hj⟩⟩), hj⟩, } end } } @[simp] lemma smul_apply {x : hahn_series Γ R} {s : summable_family Γ R α} {a : α} : (x • s) a = x * (s a) := rfl instance : module (hahn_series Γ R) (summable_family Γ R α) := { smul := (•), smul_zero := λ x, ext (λ a, mul_zero _), zero_smul := λ x, ext (λ a, zero_mul _), one_smul := λ x, ext (λ a, one_mul _), add_smul := λ x y s, ext (λ a, add_mul _ _ _), smul_add := λ x s t, ext (λ a, mul_add _ _ _), mul_smul := λ x y s, ext (λ a, mul_assoc _ _ _) } @[simp] lemma hsum_smul {x : hahn_series Γ R} {s : summable_family Γ R α} : (x • s).hsum = x * s.hsum := begin ext g, simp only [mul_coeff, hsum_coeff, smul_apply], have h : ∀ i, (s i).support ⊆ ⋃ j, (s j).support := set.subset_Union _, refine (eq.trans (finsum_congr (λ a, _)) (finsum_sum_comm (add_antidiagonal x.is_pwo_support s.is_pwo_Union_support g) (λ i ij, x.coeff (prod.fst ij) * (s i).coeff ij.snd) _)).trans _, { refine sum_subset (add_antidiagonal_mono_right (set.subset_Union _ a)) _, rintro ⟨i, j⟩ hU ha, rw mem_add_antidiagonal at *, rw [not_not.1 (λ con, ha ⟨hU.1, hU.2.1, con⟩), mul_zero] }, { rintro ⟨i, j⟩ hij, refine (s.finite_co_support j).subset _, simp_rw [function.support_subset_iff', function.mem_support, not_not], intros a ha, rw [ha, mul_zero] }, { refine (sum_congr rfl _).trans (sum_subset (add_antidiagonal_mono_right _) _).symm, { rintro ⟨i, j⟩ hij, rw mul_finsum, apply s.finite_co_support, }, { intros x hx, simp only [set.mem_Union, ne.def, mem_support], contrapose! hx, simp [hx] }, { rintro ⟨i, j⟩ hU ha, rw mem_add_antidiagonal at *, rw [← hsum_coeff, not_not.1 (λ con, ha ⟨hU.1, hU.2.1, con⟩), mul_zero] } } end /-- The summation of a `summable_family` as a `linear_map`. -/ @[simps] def lsum : (summable_family Γ R α) →ₗ[hahn_series Γ R] (hahn_series Γ R) := { to_fun := hsum, map_add' := λ _ _, hsum_add, map_smul' := λ _ _, hsum_smul } @[simp] lemma hsum_sub {R : Type*} [ring R] {s t : summable_family Γ R α} : (s - t).hsum = s.hsum - t.hsum := by rw [← lsum_apply, linear_map.map_sub, lsum_apply, lsum_apply] end semiring section of_finsupp variables [partial_order Γ] [add_comm_monoid R] {α : Type*} /-- A family with only finitely many nonzero elements is summable. -/ def of_finsupp (f : α →₀ (hahn_series Γ R)) : summable_family Γ R α := { to_fun := f, is_pwo_Union_support' := begin apply (f.support.is_pwo_sup (λ a, (f a).support) (λ a ha, (f a).is_pwo_support)).mono, intros g hg, obtain ⟨a, ha⟩ := set.mem_Union.1 hg, have haf : a ∈ f.support, { rw [finsupp.mem_support_iff, ← support_nonempty_iff], exact ⟨g, ha⟩ }, have h : (λ i, (f i).support) a ≤ _ := le_sup haf, exact h ha, end, finite_co_support' := λ g, begin refine f.support.finite_to_set.subset (λ a ha, _), simp only [coeff.add_monoid_hom_apply, mem_coe, finsupp.mem_support_iff, ne.def, function.mem_support], contrapose! ha, simp [ha] end } @[simp] lemma coe_of_finsupp {f : α →₀ (hahn_series Γ R)} : ⇑(summable_family.of_finsupp f) = f := rfl @[simp] lemma hsum_of_finsupp {f : α →₀ (hahn_series Γ R)} : (of_finsupp f).hsum = f.sum (λ a, id) := begin ext g, simp only [hsum_coeff, coe_of_finsupp, finsupp.sum, ne.def], simp_rw [← coeff.add_monoid_hom_apply, id.def], rw [add_monoid_hom.map_sum, finsum_eq_sum_of_support_subset], intros x h, simp only [coeff.add_monoid_hom_apply, mem_coe, finsupp.mem_support_iff, ne.def], contrapose! h, simp [h] end end of_finsupp section emb_domain variables [partial_order Γ] [add_comm_monoid R] {α β : Type*} /-- A summable family can be reindexed by an embedding without changing its sum. -/ def emb_domain (s : summable_family Γ R α) (f : α ↪ β) : summable_family Γ R β := { to_fun := λ b, if h : b ∈ set.range f then s (classical.some h) else 0, is_pwo_Union_support' := begin refine s.is_pwo_Union_support.mono (set.Union_subset (λ b g h, _)), by_cases hb : b ∈ set.range f, { rw dif_pos hb at h, exact set.mem_Union.2 ⟨classical.some hb, h⟩ }, { contrapose! h, simp [hb] } end, finite_co_support' := λ g, ((s.finite_co_support g).image f).subset begin intros b h, by_cases hb : b ∈ set.range f, { simp only [ne.def, set.mem_set_of_eq, dif_pos hb] at h, exact ⟨classical.some hb, h, classical.some_spec hb⟩ }, { contrapose! h, simp only [ne.def, set.mem_set_of_eq, dif_neg hb, not_not, zero_coeff] } end } variables (s : summable_family Γ R α) (f : α ↪ β) {a : α} {b : β} lemma emb_domain_apply : s.emb_domain f b = if h : b ∈ set.range f then s (classical.some h) else 0 := rfl @[simp] lemma emb_domain_image : s.emb_domain f (f a) = s a := begin rw [emb_domain_apply, dif_pos (set.mem_range_self a)], exact congr rfl (f.injective (classical.some_spec (set.mem_range_self a))) end @[simp] lemma emb_domain_notin_range (h : b ∉ set.range f) : s.emb_domain f b = 0 := by rw [emb_domain_apply, dif_neg h] @[simp] lemma hsum_emb_domain : (s.emb_domain f).hsum = s.hsum := begin ext g, simp only [hsum_coeff, emb_domain_apply, apply_dite hahn_series.coeff, dite_apply, zero_coeff], exact finsum_emb_domain f (λ a, (s a).coeff g) end end emb_domain section powers variables [linear_ordered_add_comm_group Γ] [comm_ring R] [is_domain R] /-- The powers of an element of positive valuation form a summable family. -/ def powers (x : hahn_series Γ R) (hx : 0 < add_val Γ R x) : summable_family Γ R ℕ := { to_fun := λ n, x ^ n, is_pwo_Union_support' := is_pwo_Union_support_powers hx, finite_co_support' := λ g, begin have hpwo := (is_pwo_Union_support_powers hx), by_cases hg : g ∈ ⋃ n : ℕ, {g | (x ^ n).coeff g ≠ 0 }, swap, { exact set.finite_empty.subset (λ n hn, hg (set.mem_Union.2 ⟨n, hn⟩)) }, apply hpwo.is_wf.induction hg, intros y ys hy, refine ((((add_antidiagonal x.is_pwo_support hpwo y).finite_to_set.bUnion (λ ij hij, hy ij.snd _ _)).image nat.succ).union (set.finite_singleton 0)).subset _, { exact (mem_add_antidiagonal.1 (mem_coe.1 hij)).2.2 }, { obtain ⟨rfl, hi, hj⟩ := mem_add_antidiagonal.1 (mem_coe.1 hij), rw [← zero_add ij.snd, ← add_assoc, add_zero], exact add_lt_add_right (with_top.coe_lt_coe.1 (lt_of_lt_of_le hx (add_val_le_of_coeff_ne_zero hi))) _, }, { intros n hn, cases n, { exact set.mem_union_right _ (set.mem_singleton 0) }, { obtain ⟨i, j, hi, hj, rfl⟩ := support_mul_subset_add_support hn, refine set.mem_union_left _ ⟨n, set.mem_Union.2 ⟨⟨i, j⟩, set.mem_Union.2 ⟨_, hj⟩⟩, rfl⟩, simp only [true_and, set.mem_Union, mem_add_antidiagonal, mem_coe, eq_self_iff_true, ne.def, mem_support, set.mem_set_of_eq], exact ⟨hi, ⟨n, hj⟩⟩ } } end } variables {x : hahn_series Γ R} (hx : 0 < add_val Γ R x) @[simp] lemma coe_powers : ⇑(powers x hx) = pow x := rfl lemma emb_domain_succ_smul_powers : (x • powers x hx).emb_domain ⟨nat.succ, nat.succ_injective⟩ = powers x hx - of_finsupp (finsupp.single 0 1) := begin apply summable_family.ext (λ n, _), cases n, { rw [emb_domain_notin_range, sub_apply, coe_powers, pow_zero, coe_of_finsupp, finsupp.single_eq_same, sub_self], rw [set.mem_range, not_exists], exact nat.succ_ne_zero }, { refine eq.trans (emb_domain_image _ ⟨nat.succ, nat.succ_injective⟩) _, simp only [pow_succ, coe_powers, coe_sub, smul_apply, coe_of_finsupp, pi.sub_apply], rw [finsupp.single_eq_of_ne (n.succ_ne_zero).symm, sub_zero] } end lemma one_sub_self_mul_hsum_powers : (1 - x) * (powers x hx).hsum = 1 := begin rw [← hsum_smul, sub_smul, one_smul, hsum_sub, ← hsum_emb_domain (x • powers x hx) ⟨nat.succ, nat.succ_injective⟩, emb_domain_succ_smul_powers], simp, end end powers end summable_family section inversion variables [linear_ordered_add_comm_group Γ] section is_domain variables [comm_ring R] [is_domain R] lemma unit_aux (x : hahn_series Γ R) {r : R} (hr : r * x.coeff x.order = 1) : 0 < add_val Γ R (1 - C r * (single (- x.order) 1) * x) := begin have h10 : (1 : R) ≠ 0 := one_ne_zero, have x0 : x ≠ 0 := ne_zero_of_coeff_ne_zero (right_ne_zero_of_mul_eq_one hr), refine lt_of_le_of_ne ((add_val Γ R).map_le_sub (ge_of_eq (add_val Γ R).map_one) _) _, { simp only [add_valuation.map_mul], rw [add_val_apply_of_ne x0, add_val_apply_of_ne (single_ne_zero h10), add_val_apply_of_ne _, order_C, order_single h10, with_top.coe_zero, zero_add, ← with_top.coe_add, neg_add_self, with_top.coe_zero], { exact le_refl 0 }, { exact C_ne_zero (left_ne_zero_of_mul_eq_one hr) } }, { rw [add_val_apply, ← with_top.coe_zero], split_ifs, { apply with_top.coe_ne_top }, rw [ne.def, with_top.coe_eq_coe], intro con, apply coeff_order_ne_zero h, rw [← con, mul_assoc, sub_coeff, one_coeff, if_pos rfl, C_mul_eq_smul, smul_coeff, smul_eq_mul, ← add_neg_self x.order, single_mul_coeff_add, one_mul, hr, sub_self] } end lemma is_unit_iff {x : hahn_series Γ R} : is_unit x ↔ is_unit (x.coeff x.order) := begin split, { rintro ⟨⟨u, i, ui, iu⟩, rfl⟩, refine is_unit_of_mul_eq_one (u.coeff u.order) (i.coeff i.order) ((mul_coeff_order_add_order u i).symm.trans _), rw [ui, one_coeff, if_pos], rw [← order_mul (left_ne_zero_of_mul_eq_one ui) (right_ne_zero_of_mul_eq_one ui), ui, order_one] }, { rintro ⟨⟨u, i, ui, iu⟩, h⟩, rw [units.coe_mk] at h, rw h at iu, have h := summable_family.one_sub_self_mul_hsum_powers (unit_aux x iu), rw [sub_sub_cancel] at h, exact is_unit_of_mul_is_unit_right (is_unit_of_mul_eq_one _ _ h) }, end end is_domain instance [field R] : field (hahn_series Γ R) := { inv := λ x, if x0 : x = 0 then 0 else (C (x.coeff x.order)⁻¹ * (single (-x.order)) 1 * (summable_family.powers _ (unit_aux x (inv_mul_cancel (coeff_order_ne_zero x0)))).hsum), inv_zero := dif_pos rfl, mul_inv_cancel := λ x x0, begin refine (congr rfl (dif_neg x0)).trans _, have h := summable_family.one_sub_self_mul_hsum_powers (unit_aux x (inv_mul_cancel (coeff_order_ne_zero x0))), rw [sub_sub_cancel] at h, rw [← mul_assoc, mul_comm x, h], end, .. hahn_series.is_domain, .. hahn_series.comm_ring } end inversion end hahn_series