/- Copyright (c) 2019 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau -/ import data.polynomial.expand import linear_algebra.finite_dimensional import linear_algebra.matrix.determinant import ring_theory.adjoin.fg import ring_theory.polynomial.scale_roots import ring_theory.polynomial.tower /-! # Integral closure of a subring. If A is an R-algebra then `a : A` is integral over R if it is a root of a monic polynomial with coefficients in R. Enough theory is developed to prove that integral elements form a sub-R-algebra of A. ## Main definitions Let `R` be a `comm_ring` and let `A` be an R-algebra. * `ring_hom.is_integral_elem (f : R →+* A) (x : A)` : `x` is integral with respect to the map `f`, * `is_integral (x : A)` : `x` is integral over `R`, i.e., is a root of a monic polynomial with coefficients in `R`. * `integral_closure R A` : the integral closure of `R` in `A`, regarded as a sub-`R`-algebra of `A`. -/ open_locale classical open_locale big_operators polynomial open polynomial submodule section ring variables {R S A : Type*} variables [comm_ring R] [ring A] [ring S] (f : R →+* S) /-- An element `x` of `A` is said to be integral over `R` with respect to `f` if it is a root of a monic polynomial `p : R[X]` evaluated under `f` -/ def ring_hom.is_integral_elem (f : R →+* A) (x : A) := ∃ p : R[X], monic p ∧ eval₂ f x p = 0 /-- A ring homomorphism `f : R →+* A` is said to be integral if every element `A` is integral with respect to the map `f` -/ def ring_hom.is_integral (f : R →+* A) := ∀ x : A, f.is_integral_elem x variables [algebra R A] (R) /-- An element `x` of an algebra `A` over a commutative ring `R` is said to be *integral*, if it is a root of some monic polynomial `p : R[X]`. Equivalently, the element is integral over `R` with respect to the induced `algebra_map` -/ def is_integral (x : A) : Prop := (algebra_map R A).is_integral_elem x variable (A) /-- An algebra is integral if every element of the extension is integral over the base ring -/ def algebra.is_integral : Prop := (algebra_map R A).is_integral variables {R A} lemma ring_hom.is_integral_map {x : R} : f.is_integral_elem (f x) := ⟨X - C x, monic_X_sub_C _, by simp⟩ theorem is_integral_algebra_map {x : R} : is_integral R (algebra_map R A x) := (algebra_map R A).is_integral_map theorem is_integral_of_noetherian (H : is_noetherian R A) (x : A) : is_integral R x := begin let leval : (R[X] →ₗ[R] A) := (aeval x).to_linear_map, let D : ℕ → submodule R A := λ n, (degree_le R n).map leval, let M := well_founded.min (is_noetherian_iff_well_founded.1 H) (set.range D) ⟨_, ⟨0, rfl⟩⟩, have HM : M ∈ set.range D := well_founded.min_mem _ _ _, cases HM with N HN, have HM : ¬M < D (N+1) := well_founded.not_lt_min (is_noetherian_iff_well_founded.1 H) (set.range D) _ ⟨N+1, rfl⟩, rw ← HN at HM, have HN2 : D (N+1) ≤ D N := classical.by_contradiction (λ H, HM (lt_of_le_not_le (map_mono (degree_le_mono (with_bot.coe_le_coe.2 (nat.le_succ N)))) H)), have HN3 : leval (X^(N+1)) ∈ D N, { exact HN2 (mem_map_of_mem (mem_degree_le.2 (degree_X_pow_le _))) }, rcases HN3 with ⟨p, hdp, hpe⟩, refine ⟨X^(N+1) - p, monic_X_pow_sub (mem_degree_le.1 hdp), _⟩, show leval (X ^ (N + 1) - p) = 0, rw [linear_map.map_sub, hpe, sub_self] end theorem is_integral_of_submodule_noetherian (S : subalgebra R A) (H : is_noetherian R S.to_submodule) (x : A) (hx : x ∈ S) : is_integral R x := begin suffices : is_integral R (show S, from ⟨x, hx⟩), { rcases this with ⟨p, hpm, hpx⟩, replace hpx := congr_arg S.val hpx, refine ⟨p, hpm, eq.trans _ hpx⟩, simp only [aeval_def, eval₂, sum_def], rw S.val.map_sum, refine finset.sum_congr rfl (λ n hn, _), rw [S.val.map_mul, S.val.map_pow, S.val.commutes, S.val_apply, subtype.coe_mk], }, refine is_integral_of_noetherian H ⟨x, hx⟩ end end ring section variables {R A B S : Type*} variables [comm_ring R] [comm_ring A] [comm_ring B] [comm_ring S] variables [algebra R A] [algebra R B] (f : R →+* S) theorem is_integral_alg_hom (f : A →ₐ[R] B) {x : A} (hx : is_integral R x) : is_integral R (f x) := let ⟨p, hp, hpx⟩ := hx in ⟨p, hp, by rw [← aeval_def, aeval_alg_hom_apply, aeval_def, hpx, f.map_zero]⟩ @[simp] theorem is_integral_alg_equiv (f : A ≃ₐ[R] B) {x : A} : is_integral R (f x) ↔ is_integral R x := ⟨λ h, by simpa using is_integral_alg_hom f.symm.to_alg_hom h, is_integral_alg_hom f.to_alg_hom⟩ theorem is_integral_of_is_scalar_tower [algebra A B] [is_scalar_tower R A B] (x : B) (hx : is_integral R x) : is_integral A x := let ⟨p, hp, hpx⟩ := hx in ⟨p.map $ algebra_map R A, hp.map _, by rw [← aeval_def, ← is_scalar_tower.aeval_apply, aeval_def, hpx]⟩ theorem is_integral_of_subring {x : A} (T : subring R) (hx : is_integral T x) : is_integral R x := is_integral_of_is_scalar_tower x hx lemma is_integral.algebra_map [algebra A B] [is_scalar_tower R A B] {x : A} (h : is_integral R x) : is_integral R (algebra_map A B x) := begin rcases h with ⟨f, hf, hx⟩, use [f, hf], rw [is_scalar_tower.algebra_map_eq R A B, ← hom_eval₂, hx, ring_hom.map_zero] end lemma is_integral_algebra_map_iff [algebra A B] [is_scalar_tower R A B] {x : A} (hAB : function.injective (algebra_map A B)) : is_integral R (algebra_map A B x) ↔ is_integral R x := begin refine ⟨_, λ h, h.algebra_map⟩, rintros ⟨f, hf, hx⟩, use [f, hf], exact is_scalar_tower.aeval_eq_zero_of_aeval_algebra_map_eq_zero R A B hAB hx, end theorem is_integral_iff_is_integral_closure_finite {r : A} : is_integral R r ↔ ∃ s : set R, s.finite ∧ is_integral (subring.closure s) r := begin split; intro hr, { rcases hr with ⟨p, hmp, hpr⟩, refine ⟨_, finset.finite_to_set _, p.restriction, monic_restriction.2 hmp, _⟩, erw [← aeval_def, is_scalar_tower.aeval_apply _ R, map_restriction, aeval_def, hpr] }, rcases hr with ⟨s, hs, hsr⟩, exact is_integral_of_subring _ hsr end theorem fg_adjoin_singleton_of_integral (x : A) (hx : is_integral R x) : (algebra.adjoin R ({x} : set A)).to_submodule.fg := begin rcases hx with ⟨f, hfm, hfx⟩, existsi finset.image ((^) x) (finset.range (nat_degree f + 1)), apply le_antisymm, { rw span_le, intros s hs, rw finset.mem_coe at hs, rcases finset.mem_image.1 hs with ⟨k, hk, rfl⟩, clear hk, exact (algebra.adjoin R {x}).pow_mem (algebra.subset_adjoin (set.mem_singleton _)) k }, intros r hr, change r ∈ algebra.adjoin R ({x} : set A) at hr, rw algebra.adjoin_singleton_eq_range_aeval at hr, rcases (aeval x).mem_range.mp hr with ⟨p, rfl⟩, rw ← mod_by_monic_add_div p hfm, rw ← aeval_def at hfx, rw [alg_hom.map_add, alg_hom.map_mul, hfx, zero_mul, add_zero], have : degree (p %ₘ f) ≤ degree f := degree_mod_by_monic_le p hfm, generalize_hyp : p %ₘ f = q at this ⊢, rw [← sum_C_mul_X_eq q, aeval_def, eval₂_sum, sum_def], refine sum_mem (λ k hkq, _), rw [eval₂_mul, eval₂_C, eval₂_pow, eval₂_X, ← algebra.smul_def], refine smul_mem _ _ (subset_span _), rw finset.mem_coe, refine finset.mem_image.2 ⟨_, _, rfl⟩, rw [finset.mem_range, nat.lt_succ_iff], refine le_of_not_lt (λ hk, _), rw [degree_le_iff_coeff_zero] at this, rw [mem_support_iff] at hkq, apply hkq, apply this, exact lt_of_le_of_lt degree_le_nat_degree (with_bot.coe_lt_coe.2 hk) end theorem fg_adjoin_of_finite {s : set A} (hfs : s.finite) (his : ∀ x ∈ s, is_integral R x) : (algebra.adjoin R s).to_submodule.fg := set.finite.induction_on hfs (λ _, ⟨{1}, submodule.ext $ λ x, by { erw [algebra.adjoin_empty, finset.coe_singleton, ← one_eq_span, one_eq_range, linear_map.mem_range, algebra.mem_bot], refl }⟩) (λ a s has hs ih his, by rw [← set.union_singleton, algebra.adjoin_union_coe_submodule]; exact fg.mul (ih $ λ i hi, his i $ set.mem_insert_of_mem a hi) (fg_adjoin_singleton_of_integral _ $ his a $ set.mem_insert a s)) his lemma is_noetherian_adjoin_finset [is_noetherian_ring R] (s : finset A) (hs : ∀ x ∈ s, is_integral R x) : is_noetherian R (algebra.adjoin R (↑s : set A)) := is_noetherian_of_fg_of_noetherian _ (fg_adjoin_of_finite s.finite_to_set hs) /-- If `S` is a sub-`R`-algebra of `A` and `S` is finitely-generated as an `R`-module, then all elements of `S` are integral over `R`. -/ theorem is_integral_of_mem_of_fg (S : subalgebra R A) (HS : S.to_submodule.fg) (x : A) (hx : x ∈ S) : is_integral R x := begin -- say `x ∈ S`. We want to prove that `x` is integral over `R`. -- Say `S` is generated as an `R`-module by the set `y`. cases HS with y hy, -- We can write `x` as `∑ rᵢ yᵢ` for `yᵢ ∈ Y`. obtain ⟨lx, hlx1, hlx2⟩ : ∃ (l : A →₀ R) (H : l ∈ finsupp.supported R R ↑y), (finsupp.total A A R id) l = x, { rwa [←(@finsupp.mem_span_image_iff_total A A R _ _ _ id ↑y x), set.image_id ↑y, hy] }, -- Note that `y ⊆ S`. have hyS : ∀ {p}, p ∈ y → p ∈ S := λ p hp, show p ∈ S.to_submodule, by { rw ← hy, exact subset_span hp }, -- Now `S` is a subalgebra so the product of two elements of `y` is also in `S`. have : ∀ (jk : (↑(y.product y) : set (A × A))), jk.1.1 * jk.1.2 ∈ S.to_submodule := λ jk, S.mul_mem (hyS (finset.mem_product.1 jk.2).1) (hyS (finset.mem_product.1 jk.2).2), rw [← hy, ← set.image_id ↑y] at this, simp only [finsupp.mem_span_image_iff_total] at this, -- Say `yᵢyⱼ = ∑rᵢⱼₖ yₖ` choose ly hly1 hly2, -- Now let `S₀` be the subring of `R` generated by the `rᵢ` and the `rᵢⱼₖ`. let S₀ : subring R := subring.closure ↑(lx.frange ∪ finset.bUnion finset.univ (finsupp.frange ∘ ly)), -- It suffices to prove that `x` is integral over `S₀`. refine is_integral_of_subring S₀ _, letI : comm_ring S₀ := subring_class.to_comm_ring S₀, letI : algebra S₀ A := algebra.of_subring S₀, -- Claim: the `S₀`-module span (in `A`) of the set `y ∪ {1}` is closed under -- multiplication (indeed, this is the motivation for the definition of `S₀`). have : span S₀ (insert 1 ↑y : set A) * span S₀ (insert 1 ↑y : set A) ≤ span S₀ (insert 1 ↑y : set A), { rw span_mul_span, refine span_le.2 (λ z hz, _), rcases set.mem_mul.1 hz with ⟨p, q, rfl | hp, hq, rfl⟩, { rw one_mul, exact subset_span hq }, rcases hq with rfl | hq, { rw mul_one, exact subset_span (or.inr hp) }, erw ← hly2 ⟨(p, q), finset.mem_product.2 ⟨hp, hq⟩⟩, rw [finsupp.total_apply, finsupp.sum], refine (span S₀ (insert 1 ↑y : set A)).sum_mem (λ t ht, _), have : ly ⟨(p, q), finset.mem_product.2 ⟨hp, hq⟩⟩ t ∈ S₀ := subring.subset_closure (finset.mem_union_right _ $ finset.mem_bUnion.2 ⟨⟨(p, q), finset.mem_product.2 ⟨hp, hq⟩⟩, finset.mem_univ _, finsupp.mem_frange.2 ⟨finsupp.mem_support_iff.1 ht, _, rfl⟩⟩), change (⟨_, this⟩ : S₀) • t ∈ _, exact smul_mem _ _ (subset_span $ or.inr $ hly1 _ ht) }, -- Hence this span is a subring. Call this subring `S₁`. let S₁ : subring A := { carrier := span S₀ (insert 1 ↑y : set A), one_mem' := subset_span $ or.inl rfl, mul_mem' := λ p q hp hq, this $ mul_mem_mul hp hq, zero_mem' := (span S₀ (insert 1 ↑y : set A)).zero_mem, add_mem' := λ _ _, (span S₀ (insert 1 ↑y : set A)).add_mem, neg_mem' := λ _, (span S₀ (insert 1 ↑y : set A)).neg_mem }, have : S₁ = subalgebra.to_subring (algebra.adjoin S₀ (↑y : set A)), { ext z, suffices : z ∈ span ↥S₀ (insert 1 ↑y : set A) ↔ z ∈ (algebra.adjoin ↥S₀ (y : set A)).to_submodule, { simpa }, split; intro hz, { exact (span_le.2 (set.insert_subset.2 ⟨(algebra.adjoin S₀ ↑y).one_mem, algebra.subset_adjoin⟩)) hz }, { rw [subalgebra.mem_to_submodule, algebra.mem_adjoin_iff] at hz, suffices : subring.closure (set.range ⇑(algebra_map ↥S₀ A) ∪ ↑y) ≤ S₁, { exact this hz }, refine subring.closure_le.2 (set.union_subset _ (λ t ht, subset_span $ or.inr ht)), rw set.range_subset_iff, intro y, rw algebra.algebra_map_eq_smul_one, exact smul_mem _ y (subset_span (or.inl rfl)) } }, have foo : ∀ z, z ∈ S₁ ↔ z ∈ algebra.adjoin ↥S₀ (y : set A), simp [this], haveI : is_noetherian_ring ↥S₀ := is_noetherian_subring_closure _ (finset.finite_to_set _), refine is_integral_of_submodule_noetherian (algebra.adjoin S₀ ↑y) (is_noetherian_of_fg_of_noetherian _ ⟨insert 1 y, by { rw [finset.coe_insert], ext z, simp [S₁], convert foo z}⟩) _ _, rw [← hlx2, finsupp.total_apply, finsupp.sum], refine subalgebra.sum_mem _ (λ r hr, _), have : lx r ∈ S₀ := subring.subset_closure (finset.mem_union_left _ (finset.mem_image_of_mem _ hr)), change (⟨_, this⟩ : S₀) • r ∈ _, rw finsupp.mem_supported at hlx1, exact subalgebra.smul_mem _ (algebra.subset_adjoin $ hlx1 hr) _ end lemma ring_hom.is_integral_of_mem_closure {x y z : S} (hx : f.is_integral_elem x) (hy : f.is_integral_elem y) (hz : z ∈ subring.closure ({x, y} : set S)) : f.is_integral_elem z := begin letI : algebra R S := f.to_algebra, have := (fg_adjoin_singleton_of_integral x hx).mul (fg_adjoin_singleton_of_integral y hy), rw [← algebra.adjoin_union_coe_submodule, set.singleton_union] at this, exact is_integral_of_mem_of_fg (algebra.adjoin R {x, y}) this z (algebra.mem_adjoin_iff.2 $ subring.closure_mono (set.subset_union_right _ _) hz), end theorem is_integral_of_mem_closure {x y z : A} (hx : is_integral R x) (hy : is_integral R y) (hz : z ∈ subring.closure ({x, y} : set A)) : is_integral R z := (algebra_map R A).is_integral_of_mem_closure hx hy hz lemma ring_hom.is_integral_zero : f.is_integral_elem 0 := f.map_zero ▸ f.is_integral_map theorem is_integral_zero : is_integral R (0:A) := (algebra_map R A).is_integral_zero lemma ring_hom.is_integral_one : f.is_integral_elem 1 := f.map_one ▸ f.is_integral_map theorem is_integral_one : is_integral R (1:A) := (algebra_map R A).is_integral_one lemma ring_hom.is_integral_add {x y : S} (hx : f.is_integral_elem x) (hy : f.is_integral_elem y) : f.is_integral_elem (x + y) := f.is_integral_of_mem_closure hx hy $ subring.add_mem _ (subring.subset_closure (or.inl rfl)) (subring.subset_closure (or.inr rfl)) theorem is_integral_add {x y : A} (hx : is_integral R x) (hy : is_integral R y) : is_integral R (x + y) := (algebra_map R A).is_integral_add hx hy lemma ring_hom.is_integral_neg {x : S} (hx : f.is_integral_elem x) : f.is_integral_elem (-x) := f.is_integral_of_mem_closure hx hx (subring.neg_mem _ (subring.subset_closure (or.inl rfl))) theorem is_integral_neg {x : A} (hx : is_integral R x) : is_integral R (-x) := (algebra_map R A).is_integral_neg hx lemma ring_hom.is_integral_sub {x y : S} (hx : f.is_integral_elem x) (hy : f.is_integral_elem y) : f.is_integral_elem (x - y) := by simpa only [sub_eq_add_neg] using f.is_integral_add hx (f.is_integral_neg hy) theorem is_integral_sub {x y : A} (hx : is_integral R x) (hy : is_integral R y) : is_integral R (x - y) := (algebra_map R A).is_integral_sub hx hy lemma ring_hom.is_integral_mul {x y : S} (hx : f.is_integral_elem x) (hy : f.is_integral_elem y) : f.is_integral_elem (x * y) := f.is_integral_of_mem_closure hx hy (subring.mul_mem _ (subring.subset_closure (or.inl rfl)) (subring.subset_closure (or.inr rfl))) theorem is_integral_mul {x y : A} (hx : is_integral R x) (hy : is_integral R y) : is_integral R (x * y) := (algebra_map R A).is_integral_mul hx hy lemma is_integral_smul [algebra S A] [algebra R S] [is_scalar_tower R S A] {x : A} (r : R) (hx : is_integral S x) : is_integral S (r • x) := begin rw [algebra.smul_def, is_scalar_tower.algebra_map_apply R S A], exact is_integral_mul is_integral_algebra_map hx, end lemma is_integral_of_pow {x : A} {n : ℕ} (hn : 0 < n) (hx : is_integral R $ x ^ n) : is_integral R x := begin rcases hx with ⟨p, ⟨hmonic, heval⟩⟩, exact ⟨expand R n p, monic.expand hn hmonic, by rwa [eval₂_eq_eval_map, map_expand, expand_eval, ← eval₂_eq_eval_map]⟩ end variables (R A) /-- The integral closure of R in an R-algebra A. -/ def integral_closure : subalgebra R A := { carrier := { r | is_integral R r }, zero_mem' := is_integral_zero, one_mem' := is_integral_one, add_mem' := λ _ _, is_integral_add, mul_mem' := λ _ _, is_integral_mul, algebra_map_mem' := λ x, is_integral_algebra_map } theorem mem_integral_closure_iff_mem_fg {r : A} : r ∈ integral_closure R A ↔ ∃ M : subalgebra R A, M.to_submodule.fg ∧ r ∈ M := ⟨λ hr, ⟨algebra.adjoin R {r}, fg_adjoin_singleton_of_integral _ hr, algebra.subset_adjoin rfl⟩, λ ⟨M, Hf, hrM⟩, is_integral_of_mem_of_fg M Hf _ hrM⟩ variables {R} {A} lemma adjoin_le_integral_closure {x : A} (hx : is_integral R x) : algebra.adjoin R {x} ≤ integral_closure R A := begin rw [algebra.adjoin_le_iff], simp only [set_like.mem_coe, set.singleton_subset_iff], exact hx end lemma le_integral_closure_iff_is_integral {S : subalgebra R A} : S ≤ integral_closure R A ↔ algebra.is_integral R S := set_like.forall.symm.trans (forall_congr (λ x, show is_integral R (algebra_map S A x) ↔ is_integral R x, from is_integral_algebra_map_iff subtype.coe_injective)) lemma is_integral_sup {S T : subalgebra R A} : algebra.is_integral R ↥(S ⊔ T) ↔ algebra.is_integral R S ∧ algebra.is_integral R T := by simp only [←le_integral_closure_iff_is_integral, sup_le_iff] /-- Mapping an integral closure along an `alg_equiv` gives the integral closure. -/ lemma integral_closure_map_alg_equiv (f : A ≃ₐ[R] B) : (integral_closure R A).map (f : A →ₐ[R] B) = integral_closure R B := begin ext y, rw subalgebra.mem_map, split, { rintros ⟨x, hx, rfl⟩, exact is_integral_alg_hom f hx }, { intro hy, use [f.symm y, is_integral_alg_hom (f.symm : B →ₐ[R] A) hy], simp } end lemma integral_closure.is_integral (x : integral_closure R A) : is_integral R x := let ⟨p, hpm, hpx⟩ := x.2 in ⟨p, hpm, subtype.eq $ by rwa [← aeval_def, subtype.val_eq_coe, ← subalgebra.val_apply, aeval_alg_hom_apply] at hpx⟩ lemma ring_hom.is_integral_of_is_integral_mul_unit (x y : S) (r : R) (hr : f r * y = 1) (hx : f.is_integral_elem (x * y)) : f.is_integral_elem x := begin obtain ⟨p, ⟨p_monic, hp⟩⟩ := hx, refine ⟨scale_roots p r, ⟨(monic_scale_roots_iff r).2 p_monic, _⟩⟩, convert scale_roots_eval₂_eq_zero f hp, rw [mul_comm x y, ← mul_assoc, hr, one_mul], end theorem is_integral_of_is_integral_mul_unit {x y : A} {r : R} (hr : algebra_map R A r * y = 1) (hx : is_integral R (x * y)) : is_integral R x := (algebra_map R A).is_integral_of_is_integral_mul_unit x y r hr hx /-- Generalization of `is_integral_of_mem_closure` bootstrapped up from that lemma -/ lemma is_integral_of_mem_closure' (G : set A) (hG : ∀ x ∈ G, is_integral R x) : ∀ x ∈ (subring.closure G), is_integral R x := λ x hx, subring.closure_induction hx hG is_integral_zero is_integral_one (λ _ _, is_integral_add) (λ _, is_integral_neg) (λ _ _, is_integral_mul) lemma is_integral_of_mem_closure'' {S : Type*} [comm_ring S] {f : R →+* S} (G : set S) (hG : ∀ x ∈ G, f.is_integral_elem x) : ∀ x ∈ (subring.closure G), f.is_integral_elem x := λ x hx, @is_integral_of_mem_closure' R S _ _ f.to_algebra G hG x hx lemma is_integral.pow {x : A} (h : is_integral R x) (n : ℕ) : is_integral R (x ^ n) := (integral_closure R A).pow_mem h n lemma is_integral.nsmul {x : A} (h : is_integral R x) (n : ℕ) : is_integral R (n • x) := (integral_closure R A).nsmul_mem h n lemma is_integral.zsmul {x : A} (h : is_integral R x) (n : ℤ) : is_integral R (n • x) := (integral_closure R A).zsmul_mem h n lemma is_integral.multiset_prod {s : multiset A} (h : ∀ x ∈ s, is_integral R x) : is_integral R s.prod := (integral_closure R A).multiset_prod_mem h lemma is_integral.multiset_sum {s : multiset A} (h : ∀ x ∈ s, is_integral R x) : is_integral R s.sum := (integral_closure R A).multiset_sum_mem h lemma is_integral.prod {α : Type*} {s : finset α} (f : α → A) (h : ∀ x ∈ s, is_integral R (f x)) : is_integral R (∏ x in s, f x) := (integral_closure R A).prod_mem h lemma is_integral.sum {α : Type*} {s : finset α} (f : α → A) (h : ∀ x ∈ s, is_integral R (f x)) : is_integral R (∑ x in s, f x) := (integral_closure R A).sum_mem h lemma is_integral.det {n : Type*} [fintype n] [decidable_eq n] {M : matrix n n A} (h : ∀ i j, is_integral R (M i j)) : is_integral R M.det := begin rw [matrix.det_apply], exact is_integral.sum _ (λ σ hσ, is_integral.zsmul (is_integral.prod _ (λ i hi, h _ _)) _) end @[simp] lemma is_integral.pow_iff {x : A} {n : ℕ} (hn : 0 < n) : is_integral R (x ^ n) ↔ is_integral R x := ⟨is_integral_of_pow hn, λ hx, is_integral.pow hx n⟩ section variables (p : R[X]) (x : S) /-- The monic polynomial whose roots are `p.leading_coeff * x` for roots `x` of `p`. -/ noncomputable def normalize_scale_roots (p : R[X]) : R[X] := ∑ i in p.support, monomial i (if i = p.nat_degree then 1 else p.coeff i * p.leading_coeff ^ (p.nat_degree - 1 - i)) lemma normalize_scale_roots_coeff_mul_leading_coeff_pow (i : ℕ) (hp : 1 ≤ nat_degree p) : (normalize_scale_roots p).coeff i * p.leading_coeff ^ i = p.coeff i * p.leading_coeff ^ (p.nat_degree - 1) := begin simp only [normalize_scale_roots, finset_sum_coeff, coeff_monomial, finset.sum_ite_eq', one_mul, zero_mul, mem_support_iff, ite_mul, ne.def, ite_not], split_ifs with h₁ h₂, { simp [h₁], }, { rw [h₂, leading_coeff, ← pow_succ, tsub_add_cancel_of_le hp], }, { rw [mul_assoc, ← pow_add, tsub_add_cancel_of_le], apply nat.le_pred_of_lt, rw lt_iff_le_and_ne, exact ⟨le_nat_degree_of_ne_zero h₁, h₂⟩, }, end lemma leading_coeff_smul_normalize_scale_roots (p : R[X]) : p.leading_coeff • normalize_scale_roots p = scale_roots p p.leading_coeff := begin ext, simp only [coeff_scale_roots, normalize_scale_roots, coeff_monomial, coeff_smul, finset.smul_sum, ne.def, finset.sum_ite_eq', finset_sum_coeff, smul_ite, smul_zero, mem_support_iff], split_ifs with h₁ h₂, { simp [*] }, { simp [*] }, { rw [algebra.id.smul_eq_mul, mul_comm, mul_assoc, ← pow_succ', tsub_right_comm, tsub_add_cancel_of_le], rw nat.succ_le_iff, exact tsub_pos_of_lt (lt_of_le_of_ne (le_nat_degree_of_ne_zero h₁) h₂) }, end lemma normalize_scale_roots_support : (normalize_scale_roots p).support ≤ p.support := begin intro x, contrapose, simp only [not_mem_support_iff, normalize_scale_roots, finset_sum_coeff, coeff_monomial, finset.sum_ite_eq', mem_support_iff, ne.def, not_not, ite_eq_right_iff], intros h₁ h₂, exact (h₂ h₁).rec _, end lemma normalize_scale_roots_degree : (normalize_scale_roots p).degree = p.degree := begin apply le_antisymm, { exact finset.sup_mono (normalize_scale_roots_support p) }, { rw [← degree_scale_roots, ← leading_coeff_smul_normalize_scale_roots], exact degree_smul_le _ _ } end lemma normalize_scale_roots_eval₂_leading_coeff_mul (h : 1 ≤ p.nat_degree) (f : R →+* S) (x : S) : (normalize_scale_roots p).eval₂ f (f p.leading_coeff * x) = f p.leading_coeff ^ (p.nat_degree - 1) * (p.eval₂ f x) := begin rw [eval₂_eq_sum_range, eval₂_eq_sum_range, finset.mul_sum], apply finset.sum_congr, { rw nat_degree_eq_of_degree_eq (normalize_scale_roots_degree p) }, intros n hn, rw [mul_pow, ← mul_assoc, ← f.map_pow, ← f.map_mul, normalize_scale_roots_coeff_mul_leading_coeff_pow _ _ h, f.map_mul, f.map_pow], ring, end lemma normalize_scale_roots_monic (h : p ≠ 0) : (normalize_scale_roots p).monic := begin delta monic leading_coeff, rw nat_degree_eq_of_degree_eq (normalize_scale_roots_degree p), suffices : p = 0 → (0 : R) = 1, { simpa [normalize_scale_roots, coeff_monomial] }, exact λ h', (h h').rec _, end /-- Given a `p : R[X]` and a `x : S` such that `p.eval₂ f x = 0`, `f p.leading_coeff * x` is integral. -/ lemma ring_hom.is_integral_elem_leading_coeff_mul (h : p.eval₂ f x = 0) : f.is_integral_elem (f p.leading_coeff * x) := begin by_cases h' : 1 ≤ p.nat_degree, { use normalize_scale_roots p, have : p ≠ 0 := λ h'', by { rw [h'', nat_degree_zero] at h', exact nat.not_succ_le_zero 0 h' }, use normalize_scale_roots_monic p this, rw [normalize_scale_roots_eval₂_leading_coeff_mul p h' f x, h, mul_zero] }, { by_cases hp : p.map f = 0, { apply_fun (λ q, coeff q p.nat_degree) at hp, rw [coeff_map, coeff_zero, coeff_nat_degree] at hp, rw [hp, zero_mul], exact f.is_integral_zero }, { rw [nat.one_le_iff_ne_zero, not_not] at h', rw [eq_C_of_nat_degree_eq_zero h', eval₂_C] at h, suffices : p.map f = 0, { exact (hp this).rec _ }, rw [eq_C_of_nat_degree_eq_zero h', map_C, h, C_eq_zero] } } end /-- Given a `p : R[X]` and a root `x : S`, then `p.leading_coeff • x : S` is integral over `R`. -/ lemma is_integral_leading_coeff_smul [algebra R S] (h : aeval x p = 0) : is_integral R (p.leading_coeff • x) := begin rw aeval_def at h, rw algebra.smul_def, exact (algebra_map R S).is_integral_elem_leading_coeff_mul p x h, end end end section is_integral_closure /-- `is_integral_closure A R B` is the characteristic predicate stating `A` is the integral closure of `R` in `B`, i.e. that an element of `B` is integral over `R` iff it is an element of (the image of) `A`. -/ class is_integral_closure (A R B : Type*) [comm_ring R] [comm_semiring A] [comm_ring B] [algebra R B] [algebra A B] : Prop := (algebra_map_injective [] : function.injective (algebra_map A B)) (is_integral_iff : ∀ {x : B}, is_integral R x ↔ ∃ y, algebra_map A B y = x) instance integral_closure.is_integral_closure (R A : Type*) [comm_ring R] [comm_ring A] [algebra R A] : is_integral_closure (integral_closure R A) R A := ⟨subtype.coe_injective, λ x, ⟨λ h, ⟨⟨x, h⟩, rfl⟩, by { rintro ⟨⟨_, h⟩, rfl⟩, exact h }⟩⟩ namespace is_integral_closure variables {R A B : Type*} [comm_ring R] [comm_ring A] [comm_ring B] variables [algebra R B] [algebra A B] [is_integral_closure A R B] variables (R) {A} (B) protected theorem is_integral [algebra R A] [is_scalar_tower R A B] (x : A) : is_integral R x := (is_integral_algebra_map_iff (algebra_map_injective A R B)).mp $ show is_integral R (algebra_map A B x), from is_integral_iff.mpr ⟨x, rfl⟩ theorem is_integral_algebra [algebra R A] [is_scalar_tower R A B] : algebra.is_integral R A := λ x, is_integral_closure.is_integral R B x variables {R} (A) {B} /-- If `x : B` is integral over `R`, then it is an element of the integral closure of `R` in `B`. -/ noncomputable def mk' (x : B) (hx : is_integral R x) : A := classical.some (is_integral_iff.mp hx) @[simp] lemma algebra_map_mk' (x : B) (hx : is_integral R x) : algebra_map A B (mk' A x hx) = x := classical.some_spec (is_integral_iff.mp hx) @[simp] lemma mk'_one (h : is_integral R (1 : B) := is_integral_one) : mk' A 1 h = 1 := algebra_map_injective A R B $ by rw [algebra_map_mk', ring_hom.map_one] @[simp] lemma mk'_zero (h : is_integral R (0 : B) := is_integral_zero) : mk' A 0 h = 0 := algebra_map_injective A R B $ by rw [algebra_map_mk', ring_hom.map_zero] @[simp] lemma mk'_add (x y : B) (hx : is_integral R x) (hy : is_integral R y) : mk' A (x + y) (is_integral_add hx hy) = mk' A x hx + mk' A y hy := algebra_map_injective A R B $ by simp only [algebra_map_mk', ring_hom.map_add] @[simp] lemma mk'_mul (x y : B) (hx : is_integral R x) (hy : is_integral R y) : mk' A (x * y) (is_integral_mul hx hy) = mk' A x hx * mk' A y hy := algebra_map_injective A R B $ by simp only [algebra_map_mk', ring_hom.map_mul] @[simp] lemma mk'_algebra_map [algebra R A] [is_scalar_tower R A B] (x : R) (h : is_integral R (algebra_map R B x) := is_integral_algebra_map) : is_integral_closure.mk' A (algebra_map R B x) h = algebra_map R A x := algebra_map_injective A R B $ by rw [algebra_map_mk', ← is_scalar_tower.algebra_map_apply] section lift variables {R} (A B) {S : Type*} [comm_ring S] [algebra R S] [algebra S B] [is_scalar_tower R S B] variables [algebra R A] [is_scalar_tower R A B] (h : algebra.is_integral R S) /-- If `B / S / R` is a tower of ring extensions where `S` is integral over `R`, then `S` maps (uniquely) into an integral closure `B / A / R`. -/ noncomputable def lift : S →ₐ[R] A := { to_fun := λ x, mk' A (algebra_map S B x) (is_integral.algebra_map (h x)), map_one' := by simp only [ring_hom.map_one, mk'_one], map_zero' := by simp only [ring_hom.map_zero, mk'_zero], map_add' := λ x y, by simp_rw [← mk'_add, ring_hom.map_add], map_mul' := λ x y, by simp_rw [← mk'_mul, ring_hom.map_mul], commutes' := λ x, by simp_rw [← is_scalar_tower.algebra_map_apply, mk'_algebra_map] } @[simp] lemma algebra_map_lift (x : S) : algebra_map A B (lift A B h x) = algebra_map S B x := algebra_map_mk' _ _ _ end lift section equiv variables (R A B) (A' : Type*) [comm_ring A'] [algebra A' B] [is_integral_closure A' R B] variables [algebra R A] [algebra R A'] [is_scalar_tower R A B] [is_scalar_tower R A' B] /-- Integral closures are all isomorphic to each other. -/ noncomputable def equiv : A ≃ₐ[R] A' := alg_equiv.of_alg_hom (lift _ B (is_integral_algebra R B)) (lift _ B (is_integral_algebra R B)) (by { ext x, apply algebra_map_injective A' R B, simp }) (by { ext x, apply algebra_map_injective A R B, simp }) @[simp] lemma algebra_map_equiv (x : A) : algebra_map A' B (equiv R A B A' x) = algebra_map A B x := algebra_map_lift _ _ _ _ end equiv end is_integral_closure end is_integral_closure section algebra open algebra variables {R A B S T : Type*} variables [comm_ring R] [comm_ring A] [comm_ring B] [comm_ring S] [comm_ring T] variables [algebra A B] [algebra R B] (f : R →+* S) (g : S →+* T) lemma is_integral_trans_aux (x : B) {p : A[X]} (pmonic : monic p) (hp : aeval x p = 0) : is_integral (adjoin R (↑(p.map $ algebra_map A B).frange : set B)) x := begin generalize hS : (↑(p.map $ algebra_map A B).frange : set B) = S, have coeffs_mem : ∀ i, (p.map $ algebra_map A B).coeff i ∈ adjoin R S, { intro i, by_cases hi : (p.map $ algebra_map A B).coeff i = 0, { rw hi, exact subalgebra.zero_mem _ }, rw ← hS, exact subset_adjoin (coeff_mem_frange _ _ hi) }, obtain ⟨q, hq⟩ : ∃ q : (adjoin R S)[X], q.map (algebra_map (adjoin R S) B) = (p.map $ algebra_map A B), { rw ← set.mem_range, exact (polynomial.mem_map_range _).2 (λ i, ⟨⟨_, coeffs_mem i⟩, rfl⟩) }, use q, split, { suffices h : (q.map (algebra_map (adjoin R S) B)).monic, { refine monic_of_injective _ h, exact subtype.val_injective }, { rw hq, exact pmonic.map _ } }, { convert hp using 1, replace hq := congr_arg (eval x) hq, convert hq using 1; symmetry; apply eval_map }, end variables [algebra R A] [is_scalar_tower R A B] /-- If A is an R-algebra all of whose elements are integral over R, and x is an element of an A-algebra that is integral over A, then x is integral over R.-/ lemma is_integral_trans (A_int : is_integral R A) (x : B) (hx : is_integral A x) : is_integral R x := begin rcases hx with ⟨p, pmonic, hp⟩, let S : set B := ↑(p.map $ algebra_map A B).frange, refine is_integral_of_mem_of_fg (adjoin R (S ∪ {x})) _ _ (subset_adjoin $ or.inr rfl), refine fg_trans (fg_adjoin_of_finite (finset.finite_to_set _) (λ x hx, _)) _, { rw [finset.mem_coe, frange, finset.mem_image] at hx, rcases hx with ⟨i, _, rfl⟩, rw coeff_map, exact is_integral_alg_hom (is_scalar_tower.to_alg_hom R A B) (A_int _) }, { apply fg_adjoin_singleton_of_integral, exact is_integral_trans_aux _ pmonic hp } end /-- If A is an R-algebra all of whose elements are integral over R, and B is an A-algebra all of whose elements are integral over A, then all elements of B are integral over R.-/ lemma algebra.is_integral_trans (hA : is_integral R A) (hB : is_integral A B) : is_integral R B := λ x, is_integral_trans hA x (hB x) lemma ring_hom.is_integral_trans (hf : f.is_integral) (hg : g.is_integral) : (g.comp f).is_integral := @algebra.is_integral_trans R S T _ _ _ g.to_algebra (g.comp f).to_algebra f.to_algebra (@is_scalar_tower.of_algebra_map_eq R S T _ _ _ f.to_algebra g.to_algebra (g.comp f).to_algebra (ring_hom.comp_apply g f)) hf hg lemma ring_hom.is_integral_of_surjective (hf : function.surjective f) : f.is_integral := λ x, (hf x).rec_on (λ y hy, (hy ▸ f.is_integral_map : f.is_integral_elem x)) lemma is_integral_of_surjective (h : function.surjective (algebra_map R A)) : is_integral R A := (algebra_map R A).is_integral_of_surjective h /-- If `R → A → B` is an algebra tower with `A → B` injective, then if the entire tower is an integral extension so is `R → A` -/ lemma is_integral_tower_bot_of_is_integral (H : function.injective (algebra_map A B)) {x : A} (h : is_integral R (algebra_map A B x)) : is_integral R x := begin rcases h with ⟨p, ⟨hp, hp'⟩⟩, refine ⟨p, ⟨hp, _⟩⟩, rw [is_scalar_tower.algebra_map_eq R A B, ← eval₂_map, eval₂_hom, ← ring_hom.map_zero (algebra_map A B)] at hp', rw [eval₂_eq_eval_map], exact H hp', end lemma ring_hom.is_integral_tower_bot_of_is_integral (hg : function.injective g) (hfg : (g.comp f).is_integral) : f.is_integral := λ x, @is_integral_tower_bot_of_is_integral R S T _ _ _ g.to_algebra (g.comp f).to_algebra f.to_algebra (@is_scalar_tower.of_algebra_map_eq R S T _ _ _ f.to_algebra g.to_algebra (g.comp f).to_algebra (ring_hom.comp_apply g f)) hg x (hfg (g x)) lemma is_integral_tower_bot_of_is_integral_field {R A B : Type*} [comm_ring R] [field A] [comm_ring B] [nontrivial B] [algebra R A] [algebra A B] [algebra R B] [is_scalar_tower R A B] {x : A} (h : is_integral R (algebra_map A B x)) : is_integral R x := is_integral_tower_bot_of_is_integral (algebra_map A B).injective h lemma ring_hom.is_integral_elem_of_is_integral_elem_comp {x : T} (h : (g.comp f).is_integral_elem x) : g.is_integral_elem x := let ⟨p, ⟨hp, hp'⟩⟩ := h in ⟨p.map f, hp.map f, by rwa ← eval₂_map at hp'⟩ lemma ring_hom.is_integral_tower_top_of_is_integral (h : (g.comp f).is_integral) : g.is_integral := λ x, ring_hom.is_integral_elem_of_is_integral_elem_comp f g (h x) /-- If `R → A → B` is an algebra tower, then if the entire tower is an integral extension so is `A → B`. -/ lemma is_integral_tower_top_of_is_integral {x : B} (h : is_integral R x) : is_integral A x := begin rcases h with ⟨p, ⟨hp, hp'⟩⟩, refine ⟨p.map (algebra_map R A), ⟨hp.map (algebra_map R A), _⟩⟩, rw [is_scalar_tower.algebra_map_eq R A B, ← eval₂_map] at hp', exact hp', end lemma ring_hom.is_integral_quotient_of_is_integral {I : ideal S} (hf : f.is_integral) : (ideal.quotient_map I f le_rfl).is_integral := begin rintros ⟨x⟩, obtain ⟨p, ⟨p_monic, hpx⟩⟩ := hf x, refine ⟨p.map (ideal.quotient.mk _), ⟨p_monic.map _, _⟩⟩, simpa only [hom_eval₂, eval₂_map] using congr_arg (ideal.quotient.mk I) hpx end lemma is_integral_quotient_of_is_integral {I : ideal A} (hRA : is_integral R A) : is_integral (R ⧸ I.comap (algebra_map R A)) (A ⧸ I) := (algebra_map R A).is_integral_quotient_of_is_integral hRA lemma is_integral_quotient_map_iff {I : ideal S} : (ideal.quotient_map I f le_rfl).is_integral ↔ ((ideal.quotient.mk I).comp f : R →+* S ⧸ I).is_integral := begin let g := ideal.quotient.mk (I.comap f), have := ideal.quotient_map_comp_mk le_rfl, refine ⟨λ h, _, λ h, ring_hom.is_integral_tower_top_of_is_integral g _ (this ▸ h)⟩, refine this ▸ ring_hom.is_integral_trans g (ideal.quotient_map I f le_rfl) _ h, exact ring_hom.is_integral_of_surjective g ideal.quotient.mk_surjective, end /-- If the integral extension `R → S` is injective, and `S` is a field, then `R` is also a field. -/ lemma is_field_of_is_integral_of_is_field {R S : Type*} [comm_ring R] [nontrivial R] [comm_ring S] [is_domain S] [algebra R S] (H : is_integral R S) (hRS : function.injective (algebra_map R S)) (hS : is_field S) : is_field R := begin refine ⟨⟨0, 1, zero_ne_one⟩, mul_comm, λ a ha, _⟩, -- Let `a_inv` be the inverse of `algebra_map R S a`, -- then we need to show that `a_inv` is of the form `algebra_map R S b`. obtain ⟨a_inv, ha_inv⟩ := hS.mul_inv_cancel (λ h, ha (hRS (trans h (ring_hom.map_zero _).symm))), -- Let `p : R[X]` be monic with root `a_inv`, -- and `q` be `p` with coefficients reversed (so `q(a) = q'(a) * a + 1`). -- We claim that `q(a) = 0`, so `-q'(a)` is the inverse of `a`. obtain ⟨p, p_monic, hp⟩ := H a_inv, use -∑ (i : ℕ) in finset.range p.nat_degree, (p.coeff i) * a ^ (p.nat_degree - i - 1), -- `q(a) = 0`, because multiplying everything with `a_inv^n` gives `p(a_inv) = 0`. -- TODO: this could be a lemma for `polynomial.reverse`. have hq : ∑ (i : ℕ) in finset.range (p.nat_degree + 1), (p.coeff i) * a ^ (p.nat_degree - i) = 0, { apply (injective_iff_map_eq_zero (algebra_map R S)).mp hRS, have a_inv_ne_zero : a_inv ≠ 0 := right_ne_zero_of_mul (mt ha_inv.symm.trans one_ne_zero), refine (mul_eq_zero.mp _).resolve_right (pow_ne_zero p.nat_degree a_inv_ne_zero), rw [eval₂_eq_sum_range] at hp, rw [ring_hom.map_sum, finset.sum_mul], refine (finset.sum_congr rfl (λ i hi, _)).trans hp, rw [ring_hom.map_mul, mul_assoc], congr, have : a_inv ^ p.nat_degree = a_inv ^ (p.nat_degree - i) * a_inv ^ i, { rw [← pow_add a_inv, tsub_add_cancel_of_le (nat.le_of_lt_succ (finset.mem_range.mp hi))] }, rw [ring_hom.map_pow, this, ← mul_assoc, ← mul_pow, ha_inv, one_pow, one_mul] }, -- Since `q(a) = 0` and `q(a) = q'(a) * a + 1`, we have `a * -q'(a) = 1`. -- TODO: we could use a lemma for `polynomial.div_X` here. rw [finset.sum_range_succ_comm, p_monic.coeff_nat_degree, one_mul, tsub_self, pow_zero, add_eq_zero_iff_eq_neg, eq_comm] at hq, rw [mul_comm, neg_mul, finset.sum_mul], convert hq using 2, refine finset.sum_congr rfl (λ i hi, _), have : 1 ≤ p.nat_degree - i := le_tsub_of_add_le_left (finset.mem_range.mp hi), rw [mul_assoc, ← pow_succ', tsub_add_cancel_of_le this] end lemma is_field_of_is_integral_of_is_field' {R S : Type*} [comm_ring R] [comm_ring S] [is_domain S] [algebra R S] (H : algebra.is_integral R S) (hR : is_field R) : is_field S := begin letI := hR.to_field, refine ⟨⟨0, 1, zero_ne_one⟩, mul_comm, λ x hx, _⟩, let A := algebra.adjoin R ({x} : set S), haveI : is_noetherian R A := is_noetherian_of_fg_of_noetherian A.to_submodule (fg_adjoin_singleton_of_integral x (H x)), haveI : module.finite R A := module.is_noetherian.finite R A, obtain ⟨y, hy⟩ := linear_map.surjective_of_injective (@lmul_left_injective R A _ _ _ _ ⟨x, subset_adjoin (set.mem_singleton x)⟩ (λ h, hx (subtype.ext_iff.mp h))) 1, exact ⟨y, subtype.ext_iff.mp hy⟩, end lemma algebra.is_integral.is_field_iff_is_field {R S : Type*} [comm_ring R] [nontrivial R] [comm_ring S] [is_domain S] [algebra R S] (H : algebra.is_integral R S) (hRS : function.injective (algebra_map R S)) : is_field R ↔ is_field S := ⟨is_field_of_is_integral_of_is_field' H, is_field_of_is_integral_of_is_field H hRS⟩ end algebra theorem integral_closure_idem {R : Type*} {A : Type*} [comm_ring R] [comm_ring A] [algebra R A] : integral_closure (integral_closure R A : set A) A = ⊥ := eq_bot_iff.2 $ λ x hx, algebra.mem_bot.2 ⟨⟨x, @is_integral_trans _ _ _ _ _ _ _ _ (integral_closure R A).algebra _ integral_closure.is_integral x hx⟩, rfl⟩ section is_domain variables {R S : Type*} [comm_ring R] [comm_ring S] [is_domain S] [algebra R S] instance : is_domain (integral_closure R S) := infer_instance end is_domain