(* Title: Inv_Cterms.thy License: BSD 2-Clause. See LICENSE. Author: Timothy Bourke *) section "A custom tactic for showing invariants via control terms" theory Inv_Cterms imports AWN_Labels begin text \ This tactic tries to solve a goal by reducing it to a problem over (local) cterms (using one of the cterms\_intros intro rules); expanding those to consider all process names (using one of the ctermsl\_cases destruction rules); simplifying each (using the cterms\_env simplification rules); splitting them up into separate subgoals; replacing the derivative term with a variable; `executing' a transition of each term; and then simplifying. The tactic can stop after applying introduction rule (``inv\_cterms (intro\_only)''), or after having generated the verification condition subgoals and before having simplified them (``inv\_cterms (vcs\_only)''). It takes arguments to add or remove simplification rules (``simp add: lemmanames''), to add forward rules on assumptions (to introduce previously proved invariants; ``inv add: lemmanames''), or to add elimination rules that solve any remaining subgoals (``solve: lemmanames''). To configure the tactic for a set of transition rules: \begin{enumerate} \item add elimination rules: declare seqpTEs [cterms\_seqte] \item add rules to replace derivative terms: declare elimders [cterms\_elimders] \end{enumerate} To configure the tactic for a process environment (\\\): \begin{enumerate} \item add simp rules: declare \\\.simps [cterms\_env] \item add case rules: declare aodv\_proc\_cases [ctermsl\_cases] \item add invariant intros declare seq\_invariant\_ctermsI [OF aodv\_wf aodv\_control\_within aodv\_simple\_labels, cterms\_intros] seq\_step\_invariant\_ctermsI [OF aodv\_wf aodv\_control\_within aodv\_simple\_labels, cterms\_intros] \end{enumerate} \ lemma has_ctermsl: "p \ ctermsl \ \ p \ ctermsl \" . named_theorems cterms_elimders "rules for truncating sequential process terms" named_theorems cterms_seqte "elimination rules for sequential process terms" named_theorems cterms_env "simplification rules for sequential process environments" named_theorems ctermsl_cases "destruction rules for case splitting ctermsl" named_theorems cterms_intros "introduction rules from cterms" named_theorems cterms_invs "invariants to try to apply at each vc" named_theorems cterms_final "elimination rules to try on each vc after simplification" ML \ fun simp_only thms ctxt = asm_full_simp_tac (ctxt |> Raw_Simplifier.clear_simpset |> fold Simplifier.add_simp thms) (* shallow_simp is useful for mopping up assumptions before really trying to simplify. Perhaps surprisingly, this saves minutes in some of the proofs that use a lot of invariants of the form (l = P-:n --> P). *) fun shallow_simp ctxt = let val ctxt' = Config.put simp_depth_limit 2 ctxt in TRY o safe_asm_full_simp_tac ctxt' end fun create_vcs ctxt i = let val main_simp_thms = rev (Named_Theorems.get ctxt @{named_theorems cterms_env}) val ctermsl_cases = rev (Named_Theorems.get ctxt @{named_theorems ctermsl_cases}) in dresolve_tac ctxt @{thms has_ctermsl} i THEN_ELSE (dmatch_tac ctxt ctermsl_cases i THEN TRY (REPEAT_ALL_NEW (ematch_tac ctxt [@{thm disjE}]) i) THEN PARALLEL_ALLGOALS (fn i => simp_only main_simp_thms ctxt i THEN TRY (REPEAT_ALL_NEW (ematch_tac ctxt [@{thm disjE}]) i)), all_tac) end fun try_invs ctxt = let val inv_thms = rev (Named_Theorems.get ctxt @{named_theorems cterms_invs}) fun fapp thm = TRY o (EVERY' (forward_tac ctxt [thm] :: replicate (Thm.nprems_of thm - 1) (assume_tac ctxt))) in EVERY' (map fapp inv_thms) end fun try_final ctxt = let val final_thms = rev (Named_Theorems.get ctxt @{named_theorems cterms_final}) fun eapp thm = EVERY' (eresolve_tac ctxt [thm] :: replicate (Thm.nprems_of thm - 1) (assume_tac ctxt)) in TRY o (FIRST' (map eapp final_thms)) end fun each ctxt = (EVERY' ((ematch_tac ctxt (rev (Named_Theorems.get ctxt @{named_theorems cterms_elimders})) :: replicate 2 (assume_tac ctxt))) THEN' simp_only @{thms labels_psimps} ctxt THEN' (ematch_tac ctxt (rev (Named_Theorems.get ctxt @{named_theorems cterms_seqte})) THEN_ALL_NEW (fn j => simp_only [@{thm mem_Collect_eq}] ctxt j THEN REPEAT (eresolve_tac ctxt @{thms exE} j) THEN REPEAT (eresolve_tac ctxt @{thms conjE} j)))) ORELSE' (SOLVED' (clarsimp_tac ctxt)) fun simp_all ctxt = let val ctxt' = ctxt |> fold Splitter.add_split [@{thm if_split_asm}] in PARALLEL_ALLGOALS (shallow_simp ctxt) THEN TRY (CHANGED_PROP (PARALLEL_ALLGOALS (asm_full_simp_tac ctxt' THEN' try_final ctxt))) end fun intro_and_invs ctxt i = let val cterms_intros = rev (Named_Theorems.get ctxt @{named_theorems cterms_intros}) in match_tac ctxt cterms_intros i THEN PARALLEL_ALLGOALS (try_invs ctxt) end fun process_vcs ctxt _ = ALLGOALS (create_vcs ctxt ORELSE' (SOLVED' (clarsimp_tac ctxt))) THEN PARALLEL_ALLGOALS (TRY o each ctxt) \ method_setup inv_cterms = \ let val intro_onlyN = "intro_only" val vcs_onlyN = "vcs_only" val invN = "inv" val solveN = "solve" val inv_cterms_options = (Args.parens (Args.$$$ intro_onlyN) >> K intro_and_invs || Args.parens (Args.$$$ vcs_onlyN) >> K (fn ctxt => intro_and_invs ctxt THEN' process_vcs ctxt) || Scan.succeed (fn ctxt => intro_and_invs ctxt THEN' process_vcs ctxt THEN' K (simp_all ctxt))) in (Scan.lift inv_cterms_options --| Method.sections ((Args.$$$ invN -- Args.add -- Args.colon >> K (Method.modifier (Named_Theorems.add @{named_theorems cterms_invs}) \<^here>)) :: (Args.$$$ solveN -- Args.colon >> K (Method.modifier (Named_Theorems.add @{named_theorems cterms_final}) \<^here>)) :: Simplifier.simp_modifiers) >> (fn tac => SIMPLE_METHOD' o tac)) end \ "solve invariants by considering all (interesting) control terms" declare insert_iff [cterms_env] Un_insert_right [cterms_env] sup_bot_right [cterms_env] Product_Type.prod_cases [cterms_env] ctermsl.simps [cterms_env] end