(* Title: Invariants.thy License: BSD 2-Clause. See LICENSE. Author: Timothy Bourke *) section "Reachability and Invariance" theory Invariants imports Lib TransitionSystems begin subsection Reachability text \ A state is `reachable' under @{term I} if either it is the initial state, or it is the destination of a transition whose action satisfies @{term I} from a reachable state. The `standard' definition of reachability is recovered by setting @{term I} to @{term TT}. \ inductive_set reachable for A :: "('s, 'a) automaton" and I :: "'a \ bool" where reachable_init: "s \ init A \ s \ reachable A I" | reachable_step: "\ s \ reachable A I; (s, a, s') \ trans A; I a \ \ s' \ reachable A I" inductive_cases reachable_icases: "s \ reachable A I" lemma reachable_pair_induct [consumes, case_names init step]: assumes "(\, p) \ reachable A I" and "\\ p. (\, p) \ init A \ P \ p" and "(\\ p \' p' a. \ (\, p) \ reachable A I; P \ p; ((\, p), a, (\', p')) \ trans A; I a \ \ P \' p')" shows "P \ p" using assms(1) proof (induction "(\, p)" arbitrary: \ p) fix \ p assume "(\, p) \ init A" with assms(2) show "P \ p" . next fix s a \' p' assume "s \ reachable A I" and tr: "(s, a, (\', p')) \ trans A" and "I a" and IH: "\\ p. s = (\, p) \ P \ p" from this(1) obtain \ p where "s = (\, p)" and "(\, p) \ reachable A I" by (metis prod.collapse) note this(2) moreover from IH and \s = (\, p)\ have "P \ p" . moreover from tr and \s = (\, p)\ have "((\, p), a, (\', p')) \ trans A" by simp ultimately show "P \' p'" using \I a\ by (rule assms(3)) qed lemma reachable_weakenE [elim]: assumes "s \ reachable A P" and PQ: "\a. P a \ Q a" shows "s \ reachable A Q" using assms(1) proof (induction) fix s assume "s \ init A" thus "s \ reachable A Q" .. next fix s a s' assume "s \ reachable A P" and "s \ reachable A Q" and "(s, a, s') \ trans A" and "P a" from \P a\ have "Q a" by (rule PQ) with \s \ reachable A Q\ and \(s, a, s') \ trans A\ show "s' \ reachable A Q" .. qed lemma reachable_weaken_TT [elim]: assumes "s \ reachable A I" shows "s \ reachable A TT" using assms by rule simp lemma init_empty_reachable_empty: assumes "init A = {}" shows "reachable A I = {}" proof (rule ccontr) assume "reachable A I \ {}" then obtain s where "s \ reachable A I" by auto thus False proof (induction rule: reachable.induct) fix s assume "s \ init A" with \init A = {}\ show False by simp qed qed subsection Invariance definition invariant :: "('s, 'a) automaton \ ('a \ bool) \ ('s \ bool) \ bool" ("_ \ (1'(_ \')/ _)" [100, 0, 9] 8) where "(A \ (I \) P) = (\s\reachable A I. P s)" abbreviation any_invariant :: "('s, 'a) automaton \ ('s \ bool) \ bool" ("_ \ _" [100, 9] 8) where "(A \ P) \ (A \ (TT \) P)" lemma invariantI [intro]: assumes init: "\s. s \ init A \ P s" and step: "\s a s'. \ s \ reachable A I; P s; (s, a, s') \ trans A; I a \ \ P s'" shows "A \ (I \) P" unfolding invariant_def proof fix s assume "s \ reachable A I" thus "P s" proof induction fix s assume "s \ init A" thus "P s" by (rule init) next fix s a s' assume "s \ reachable A I" and "P s" and "(s, a, s') \ trans A" and "I a" thus "P s'" by (rule step) qed qed lemma invariant_pairI [intro]: assumes init: "\\ p. (\, p) \ init A \ P (\, p)" and step: "\\ p \' p' a. \ (\, p) \ reachable A I; P (\, p); ((\, p), a, (\', p')) \ trans A; I a \ \ P (\', p')" shows "A \ (I \) P" using assms by auto lemma invariant_arbitraryI: assumes "\s. s \ reachable A I \ P s" shows "A \ (I \) P" using assms unfolding invariant_def by simp lemma invariantD [dest]: assumes "A \ (I \) P" and "s \ reachable A I" shows "P s" using assms unfolding invariant_def by blast lemma invariant_initE [elim]: assumes invP: "A \ (I \) P" and init: "s \ init A" shows "P s" proof - from init have "s \ reachable A I" .. with invP show ?thesis .. qed lemma invariant_weakenE [elim]: fixes T \ P Q assumes invP: "A \ (PI \) P" and PQ: "\s. P s \ Q s" and QIPI: "\a. QI a \ PI a" shows "A \ (QI \) Q" proof fix s assume "s \ init A" with invP have "P s" .. thus "Q s" by (rule PQ) next fix s a s' assume "s \ reachable A QI" and "(s, a, s') \ trans A" and "QI a" from \QI a\ have "PI a" by (rule QIPI) from \s \ reachable A QI\ and QIPI have "s \ reachable A PI" .. hence "s' \ reachable A PI" using \(s, a, s') \ trans A\ and \PI a\ .. with invP have "P s'" .. thus "Q s'" by (rule PQ) qed definition step_invariant :: "('s, 'a) automaton \ ('a \ bool) \ (('s, 'a) transition \ bool) \ bool" ("_ \\<^sub>A (1'(_ \')/ _)" [100, 0, 0] 8) where "(A \\<^sub>A (I \) P) = (\a. I a \ (\s\reachable A I. (\s'.(s, a, s') \ trans A \ P (s, a, s'))))" lemma invariant_restrict_inD [dest]: assumes "A \ (TT \) P" shows "A \ (QI \) P" using assms by auto abbreviation any_step_invariant :: "('s, 'a) automaton \ (('s, 'a) transition \ bool) \ bool" ("_ \\<^sub>A _" [100, 9] 8) where "(A \\<^sub>A P) \ (A \\<^sub>A (TT \) P)" lemma step_invariant_true: "p \\<^sub>A (\(s, a, s'). True)" unfolding step_invariant_def by simp lemma step_invariantI [intro]: assumes *: "\s a s'. \ s\reachable A I; (s, a, s')\trans A; I a \ \ P (s, a, s')" shows "A \\<^sub>A (I \) P" unfolding step_invariant_def using assms by auto lemma step_invariantD [dest]: assumes "A \\<^sub>A (I \) P" and "s\reachable A I" and "(s, a, s') \ trans A" and "I a" shows "P (s, a, s')" using assms unfolding step_invariant_def by blast lemma step_invariantE [elim]: fixes T \ P I s a s' assumes "A \\<^sub>A (I \) P" and "s\reachable A I" and "(s, a, s') \ trans A" and "I a" and "P (s, a, s') \ Q" shows "Q" using assms by auto lemma step_invariant_pairI [intro]: assumes *: "\\ p \' p' a. \ (\, p) \ reachable A I; ((\, p), a, (\', p')) \ trans A; I a \ \ P ((\, p), a, (\', p'))" shows "A \\<^sub>A (I \) P" using assms by auto lemma step_invariant_arbitraryI: assumes "\\ p a \' p'. \ (\, p) \ reachable A I; ((\, p), a, (\', p')) \ trans A; I a \ \ P ((\, p), a, (\', p'))" shows "A \\<^sub>A (I \) P" using assms by auto lemma step_invariant_weakenE [elim!]: fixes T \ P Q assumes invP: "A \\<^sub>A (PI \) P" and PQ: "\t. P t \ Q t" and QIPI: "\a. QI a \ PI a" shows "A \\<^sub>A (QI \) Q" proof fix s a s' assume "s \ reachable A QI" and "(s, a, s') \ trans A" and "QI a" from \QI a\ have "PI a" by (rule QIPI) from \s \ reachable A QI\ have "s \ reachable A PI" using QIPI .. with invP have "P (s, a, s')" using \(s, a, s') \ trans A\ \PI a\ .. thus "Q (s, a, s')" by (rule PQ) qed lemma step_invariant_weaken_with_invariantE [elim]: assumes pinv: "A \ (I \) P" and qinv: "A \\<^sub>A (I \) Q" and wr: "\s a s'. \ P s; P s'; Q (s, a, s'); I a \ \ R (s, a, s')" shows "A \\<^sub>A (I \) R" proof fix s a s' assume sr: "s \ reachable A I" and tr: "(s, a, s') \ trans A" and "I a" hence "s' \ reachable A I" .. with pinv have "P s'" .. from pinv and sr have "P s" .. from qinv sr tr \I a\ have "Q (s, a, s')" .. with \P s\ and \P s'\ show "R (s, a, s')" using \I a\ by (rule wr) qed lemma step_to_invariantI: assumes sinv: "A \\<^sub>A (I \) Q" and init: "\s. s \ init A \ P s" and step: "\s s' a. \ s \ reachable A I; P s; Q (s, a, s'); I a \ \ P s'" shows "A \ (I \) P" proof fix s assume "s \ init A" thus "P s" by (rule init) next fix s s' a assume "s \ reachable A I" and "P s" and "(s, a, s') \ trans A" and "I a" show "P s'" proof - from sinv and \s\reachable A I\ and \(s, a, s')\trans A\ and \I a\ have "Q (s, a, s')" .. with \s\reachable A I\ and \P s\ show "P s'" using \I a\ by (rule step) qed qed end