section \Counterclockwise\ theory Counterclockwise imports "HOL-Analysis.Multivariate_Analysis" begin text \\label{sec:counterclockwise}\ subsection \Auxiliary Lemmas\ lemma convex3_alt: fixes x y z::"'a::real_vector" assumes "0 \ a" "0 \ b" "0 \ c" "a + b + c = 1" obtains u v where "a *\<^sub>R x + b *\<^sub>R y + c *\<^sub>R z = x + u *\<^sub>R (y - x) + v *\<^sub>R (z - x)" and "0 \ u" "0 \ v" "u + v \ 1" proof - from convex_hull_3[of x y z] have "a *\<^sub>R x + b *\<^sub>R y + c *\<^sub>R z \ convex hull {x, y, z}" using assms by auto also note convex_hull_3_alt finally obtain u v where "a *\<^sub>R x + b *\<^sub>R y + c *\<^sub>R z = x + u *\<^sub>R (y - x) + v *\<^sub>R (z - x)" and uv: "0 \ u" "0 \ v" "u + v \ 1" by auto thus ?thesis .. qed lemma (in ordered_ab_group_add) add_nonpos_eq_0_iff: assumes x: "0 \ x" and y: "0 \ y" shows "x + y = 0 \ x = 0 \ y = 0" proof - from add_nonneg_eq_0_iff[of "-x" "-y"] assms have "- (x + y) = 0 \ - x = 0 \ - y = 0" by simp also have "(- (x + y) = 0) = (x + y = 0)" unfolding neg_equal_0_iff_equal .. finally show ?thesis by simp qed lemma sum_nonpos_eq_0_iff: fixes f :: "'a \ 'b::ordered_ab_group_add" shows "\finite A; \x\A. f x \ 0\ \ sum f A = 0 \ (\x\A. f x = 0)" by (induct set: finite) (simp_all add: add_nonpos_eq_0_iff sum_nonpos) lemma fold_if_in_set: "fold (\x m. if P x m then x else m) xs x \ set (x#xs)" by (induct xs arbitrary: x) auto subsection \Sort Elements of a List\ locale linorder_list0 = fixes le::"'a \ 'a \ bool" begin definition "min_for a b = (if le a b then a else b)" lemma min_for_in[simp]: "x \ S \ y \ S \ min_for x y \ S" by (auto simp: min_for_def) lemma fold_min_eqI1: "fold min_for ys y \ set ys \ fold min_for ys y = y" using fold_if_in_set[of _ ys y] by (auto simp: min_for_def[abs_def]) function selsort where "selsort [] = []" | "selsort (y#ys) = (let xm = fold min_for ys y; xs' = List.remove1 xm (y#ys) in (xm#selsort xs'))" by pat_completeness auto termination by (relation "Wellfounded.measure length") (auto simp: length_remove1 intro!: fold_min_eqI1 dest!: length_pos_if_in_set) lemma in_set_selsort_eq: "x \ set (selsort xs) \ x \ (set xs)" by (induct rule: selsort.induct) (auto simp: Let_def intro!: fold_min_eqI1) lemma set_selsort[simp]: "set (selsort xs) = set xs" using in_set_selsort_eq by blast lemma length_selsort[simp]: "length (selsort xs) = length xs" proof (induct xs rule: selsort.induct) case (2 x xs) from 2[OF refl refl] show ?case unfolding selsort.simps by (auto simp: Let_def length_remove1 simp del: selsort.simps split: if_split_asm intro!: Suc_pred dest!: fold_min_eqI1) qed simp lemma distinct_selsort[simp]: "distinct (selsort xs) = distinct xs" by (auto intro!: card_distinct dest!: distinct_card) lemma selsort_eq_empty_iff[simp]: "selsort xs = [] \ xs = []" by (cases xs) (auto simp: Let_def) inductive sortedP :: "'a list \ bool" where Nil: "sortedP []" | Cons: "\y\set ys. le x y \ sortedP ys \ sortedP (x # ys)" inductive_cases sortedP_Nil: "sortedP []" and sortedP_Cons: "sortedP (x#xs)" inductive_simps sortedP_Nil_iff: "sortedP Nil" and sortedP_Cons_iff: "sortedP (Cons x xs)" lemma sortedP_append_iff: "sortedP (xs @ ys) = (sortedP xs & sortedP ys & (\x \ set xs. \y \ set ys. le x y))" by (induct xs) (auto intro!: Nil Cons elim!: sortedP_Cons) lemma sortedP_appendI: "sortedP xs \ sortedP ys \ (\x y. x \ set xs \ y \ set ys \ le x y) \ sortedP (xs @ ys)" by (induct xs) (auto intro!: Nil Cons elim!: sortedP_Cons) lemma sorted_nth_less: "sortedP xs \ i < j \ j < length xs \ le (xs ! i) (xs ! j)" by (induct xs arbitrary: i j) (auto simp: nth_Cons split: nat.split elim!: sortedP_Cons) lemma sorted_butlastI[intro, simp]: "sortedP xs \ sortedP (butlast xs)" by (induct xs) (auto simp: elim!: sortedP_Cons intro!: sortedP.Cons dest!: in_set_butlastD) lemma sortedP_right_of_append1: assumes "sortedP (zs@[z])" assumes "y \ set zs" shows "le y z" using assms by (induct zs arbitrary: y z) (auto elim!: sortedP_Cons) lemma sortedP_right_of_last: assumes "sortedP zs" assumes "y \ set zs" "y \ last zs" shows "le y (last zs)" using assms apply (intro sortedP_right_of_append1[of "butlast zs" "last zs" y]) subgoal by (metis append_is_Nil_conv list.distinct(1) snoc_eq_iff_butlast split_list) subgoal by (metis List.insert_def append_butlast_last_id insert_Nil list.distinct(1) rotate1.simps(2) set_ConsD set_rotate1) done lemma selsort_singleton_iff: "selsort xs = [x] \ xs = [x]" by (induct xs) (auto simp: Let_def) lemma hd_last_sorted: assumes "sortedP xs" "length xs > 1" shows "le (hd xs) (last xs)" proof (cases xs) case (Cons y ys) note ys = this thus ?thesis using ys assms by (auto elim!: sortedP_Cons) qed (insert assms, simp) end lemma (in comm_monoid_add) sum_list_distinct_selsort: assumes "distinct xs" shows "sum_list (linorder_list0.selsort le xs) = sum_list xs" using assms apply (simp add: distinct_sum_list_conv_Sum linorder_list0.distinct_selsort) apply (rule sum.cong) subgoal by (simp add: linorder_list0.set_selsort) subgoal by simp done declare linorder_list0.sortedP_Nil_iff[code] linorder_list0.sortedP_Cons_iff[code] linorder_list0.selsort.simps[code] linorder_list0.min_for_def[code] locale linorder_list = linorder_list0 le for le::"'a::ab_group_add \ _" + fixes S assumes order_refl: "a \ S \ le a a" assumes trans': "a \ S \ b \ S \ c \ S \ a \ b \ b \ c \ a \ c \ le a b \ le b c \ le a c" assumes antisym: "a \ S \ b \ S \ le a b \ le b a \ a = b" assumes linear': "a \ S \ b \ S \ a \ b \ le a b \ le b a" begin lemma trans: "a \ S \ b \ S \ c \ S \ le a b \ le b c \ le a c" by (cases "a = b" "b = c" "a = c" rule: bool.exhaust[case_product bool.exhaust[case_product bool.exhaust]]) (auto simp: order_refl intro: trans') lemma linear: "a \ S \ b \ S \ le a b \ le b a" by (cases "a = b") (auto simp: linear' order_refl) lemma min_le1: "w \ S \ y \ S \ le (min_for w y) y" and min_le2: "w \ S \ y \ S \ le (min_for w y) w" using linear by (auto simp: min_for_def refl) lemma fold_min: assumes "set xs \ S" shows "list_all (\y. le (fold min_for (tl xs) (hd xs)) y) xs" proof (cases xs) case (Cons y ys) hence subset: "set (y#ys) \ S" using assms by auto show ?thesis unfolding Cons list.sel using subset proof (induct ys arbitrary: y) case (Cons z zs) hence IH: "\y. y \ S \ list_all (le (fold min_for zs y)) (y # zs)" by simp let ?f = "fold min_for zs (min_for z y)" have "?f \ set ((min_for z y)#zs)" unfolding min_for_def[abs_def] by (rule fold_if_in_set) also have "\ \ S" using Cons.prems by auto finally have "?f \ S" . have "le ?f (min_for z y)" using IH[of "min_for z y"] Cons.prems by auto moreover have "le (min_for z y) y" "le (min_for z y) z" using Cons.prems by (auto intro!: min_le1 min_le2) ultimately have "le ?f y" "le ?f z" using Cons.prems \?f \ S\ by (auto intro!: trans[of ?f "min_for z y"]) thus ?case using IH[of "min_for z y"] using Cons.prems by auto qed (simp add: order_refl) qed simp lemma sortedP_selsort: assumes "set xs \ S" shows "sortedP (selsort xs)" using assms proof (induction xs rule: selsort.induct) case (2 z zs) from this fold_min[of "z#zs"] show ?case by (fastforce simp: list_all_iff Let_def simp del: remove1.simps intro: Cons intro!: 2(1)[OF refl refl] dest!: rev_subsetD[OF _ set_remove1_subset])+ qed (auto intro!: Nil) end subsection \Abstract CCW Systems\ locale ccw_system0 = fixes ccw::"'a \ 'a \ 'a \ bool" and S::"'a set" begin abbreviation "indelta t p q r \ ccw t q r \ ccw p t r \ ccw p q t" abbreviation "insquare p q r s \ ccw p q r \ ccw q r s \ ccw r s p \ ccw s p q" end abbreviation "distinct3 p q r \ \(p = q \ p = r \ q = r)" abbreviation "distinct4 p q r s \ \(p = q \ p = r \ p = s \ \ distinct3 q r s)" abbreviation "distinct5 p q r s t \ \(p = q \ p = r \ p = s \ p = t \ \ distinct4 q r s t)" abbreviation "in3 S p q r \ p \ S \ q \ S \ r \ S" abbreviation "in4 S p q r s \ in3 S p q r \ s \ S" abbreviation "in5 S p q r s t \ in4 S p q r s \ t \ S" locale ccw_system12 = ccw_system0 + assumes cyclic: "ccw p q r \ ccw q r p" assumes ccw_antisym: "distinct3 p q r \ in3 S p q r \ ccw p q r \ \ ccw p r q" locale ccw_system123 = ccw_system12 + assumes nondegenerate: "distinct3 p q r \ in3 S p q r \ ccw p q r \ ccw p r q" begin lemma not_ccw_eq: "distinct3 p q r \ in3 S p q r \ \ ccw p q r \ ccw p r q" using ccw_antisym nondegenerate by blast end locale ccw_system4 = ccw_system123 + assumes interior: "distinct4 p q r t \ in4 S p q r t \ ccw t q r \ ccw p t r \ ccw p q t \ ccw p q r" begin lemma interior': "distinct4 p q r t \ in4 S p q r t \ ccw p q t \ ccw q r t \ ccw r p t \ ccw p q r" by (metis ccw_antisym cyclic interior nondegenerate) end locale ccw_system1235' = ccw_system123 + assumes dual_transitive: "distinct5 p q r s t \ in5 S p q r s t \ ccw s t p \ ccw s t q \ ccw s t r \ ccw t p q \ ccw t q r \ ccw t p r" locale ccw_system1235 = ccw_system123 + assumes transitive: "distinct5 p q r s t \ in5 S p q r s t \ ccw t s p \ ccw t s q \ ccw t s r \ ccw t p q \ ccw t q r \ ccw t p r" begin lemmas ccw_axioms = cyclic nondegenerate ccw_antisym transitive sublocale ccw_system1235' proof (unfold_locales, rule ccontr, goal_cases) case prems: (1 p q r s t) hence "ccw s p q \ ccw s r p" by (metis ccw_axioms prems) moreover have "ccw s r p \ ccw s q r" by (metis ccw_axioms prems) moreover have "ccw s q r \ ccw s p q" by (metis ccw_axioms prems) ultimately have "ccw s p q \ ccw s r p \ ccw s q r \ ccw s q p \ ccw s p r \ ccw s r q" by (metis ccw_axioms prems) thus False by (metis ccw_axioms prems) qed end locale ccw_system = ccw_system1235 + ccw_system4 end