section \CCW Vector Space\ theory Counterclockwise_Vector imports Counterclockwise begin locale ccw_vector_space = ccw_system12 ccw S for ccw::"'a::real_vector \ 'a \ 'a \ bool" and S + assumes translate_plus[simp]: "ccw (a + x) (b + x) (c + x) \ ccw a b c" assumes scaleR1_eq[simp]: "0 < e \ ccw 0 (e*\<^sub>Ra) b = ccw 0 a b" assumes uminus1[simp]: "ccw 0 (-a) b = ccw 0 b a" assumes add1: "ccw 0 a b \ ccw 0 c b \ ccw 0 (a + c) b" begin lemma translate_plus'[simp]: "ccw (x + a) (x + b) (x + c) \ ccw a b c" by (auto simp: ac_simps) lemma uminus2[simp]: "ccw 0 a (- b) = ccw 0 b a" by (metis minus_minus uminus1) lemma uminus_all[simp]: "ccw (-a) (-b) (-c) \ ccw a b c" proof - have "ccw (-a) (-b) (-c) \ ccw 0 (- (b - a)) (- (c - a))" using translate_plus[of "-a" a "-b" "-c"] by simp also have "\ \ ccw 0 (b - a) (c - a)" by (simp del: minus_diff_eq) also have "\ \ ccw a b c" using translate_plus[of a "-a" b c] by simp finally show ?thesis . qed lemma translate_origin: "NO_MATCH 0 p \ ccw p q r \ ccw 0 (q - p) (r - p)" using translate_plus[of p "- p" q r] by simp lemma translate[simp]: "ccw a (a + b) (a + c) \ ccw 0 b c" by (simp add: translate_origin) lemma translate_plus3: "ccw (a - x) (b - x) c \ ccw a b (c + x)" using translate_plus[of a "-x" b "c + x"] by simp lemma renormalize: "ccw 0 (a - b) (c - a) \ ccw b a c" by (metis diff_add_cancel diff_self cyclic minus_diff_eq translate_plus3 uminus1) lemma cyclicI: "ccw p q r \ ccw q r p" by (metis cyclic) lemma scaleR2_eq[simp]: "0 < e \ ccw 0 xr (e *\<^sub>R P) \ ccw 0 xr P" using scaleR1_eq[of e "-P" xr] by simp lemma scaleR1_nonzero_eq: "e \ 0 \ ccw 0 (e *\<^sub>R a) b = (if e > 0 then ccw 0 a b else ccw 0 b a)" proof cases assume "e < 0" define e' where "e' = - e" hence "e = -e'" "e' > 0" using \e < 0\ by simp_all thus ?thesis by simp qed simp lemma neg_scaleR[simp]: "x < 0 \ ccw 0 (x *\<^sub>R b) c \ ccw 0 c b" using scaleR1_nonzero_eq by auto lemma scaleR1: "0 < e \ ccw 0 xr P \ ccw 0 (e *\<^sub>R xr) P" by simp lemma add3: "ccw 0 a b \ ccw 0 a c \ ccw 0 a (b + c)" using add1[of "-b" a "-c"] uminus1[of "b + c" a] by simp lemma add3_self[simp]: "ccw 0 p (p + q) \ ccw 0 p q" using translate[of "-p" p "p + q"] apply (simp add: cyclic) apply (metis cyclic uminus2) done lemma add2_self[simp]: "ccw 0 (p + q) p \ ccw 0 q p" using translate[of "-p" "p + q" p] apply simp apply (metis cyclic uminus1) done lemma scale_add3[simp]: "ccw 0 a (x *\<^sub>R a + b) \ ccw 0 a b" proof - { assume "x = 0" hence ?thesis by simp } moreover { assume "x > 0" hence ?thesis using add3_self scaleR1_eq by blast } moreover { assume "x < 0" define x' where "x' = - x" hence "x = -x'" "x' > 0" using \x < 0\ by simp_all hence "ccw 0 a (x *\<^sub>R a + b) = ccw 0 (x' *\<^sub>R a + - b) (x' *\<^sub>R a)" by (subst uminus1[symmetric]) simp also have "\ = ccw 0 (- b) a" unfolding add2_self by (simp add: \x' > 0\) also have "\ = ccw 0 a b" by simp finally have ?thesis . } ultimately show ?thesis by arith qed lemma scale_add3'[simp]: "ccw 0 a (b + x *\<^sub>R a) \ ccw 0 a b" and scale_minus3[simp]: "ccw 0 a (x *\<^sub>R a - b) \ ccw 0 b a" and scale_minus3'[simp]: "ccw 0 a (b - x *\<^sub>R a) \ ccw 0 a b" using scale_add3[of a x b] scale_add3[of a "-x" b] scale_add3[of a x "-b"] by (simp_all add: ac_simps) lemma sum: assumes fin: "finite X" assumes ne: "X\{}" assumes ncoll: "(\x. x \ X \ ccw 0 a (f x))" shows "ccw 0 a (sum f X)" proof - from ne obtain x where "x \ X" "insert x X = X" by auto have "ccw 0 a (sum f (insert x X))" using fin ncoll proof (induction X) case empty thus ?case using \x \ X\ ncoll by auto next case (insert y F) hence "ccw 0 a (sum f (insert y (insert x F)))" by (cases "y = x") (auto intro!: add3) thus ?case by (simp add: insert_commute) qed thus ?thesis using \insert x X = X\ by simp qed lemma sum2: assumes fin: "finite X" assumes ne: "X\{}" assumes ncoll: "(\x. x \ X \ ccw 0 (f x) a)" shows "ccw 0 (sum f X) a" using sum[OF assms(1,2), of "-a" f] ncoll by simp lemma translate_minus[simp]: "ccw (x - a) (x - b) (x - c) = ccw (-a) (-b) (-c)" using translate_plus[of "-a" x "-b" "-c"] by simp end locale ccw_convex = ccw_system ccw S for ccw and S::"'a::real_vector set" + fixes oriented assumes convex2: "u \ 0 \ v \ 0 \ u + v = 1 \ ccw a b c \ ccw a b d \ oriented a b \ ccw a b (u *\<^sub>R c + v *\<^sub>R d)" begin lemma convex_hull: assumes [intro, simp]: "finite C" assumes ccw: "\c. c \ C \ ccw a b c" assumes ch: "x \ convex hull C" assumes oriented: "oriented a b" shows "ccw a b x" proof - define D where "D = C" have D: "C \ D" "\c. c \ D \ ccw a b c" by (simp_all add: D_def ccw) show "ccw a b x" using \finite C\ D ch proof (induct arbitrary: x) case empty thus ?case by simp next case (insert c C) hence "C \ D" by simp { assume "C = {}" hence ?case using insert by simp } moreover { assume "C \ {}" from convex_hull_insert[OF this, of c] insert(6) obtain u v d where "u \ 0" "v \ 0" "d \ convex hull C" "u + v = 1" and x: "x = u *\<^sub>R c + v *\<^sub>R d" by blast have "ccw a b d" by (auto intro: insert.hyps(3)[OF \C \ D\] insert.prems \d \ convex hull C\) from insert have "ccw a b c" by simp from convex2[OF \0 \ u\ \0 \ v\ \u + v = 1\ \ccw a b c\ \ccw a b d\ \oriented a b\] have ?case by (simp add: x) } ultimately show ?case by blast qed qed end end