(* Authors: Jose Divasón Sebastiaan Joosten René Thiemann Akihisa Yamada *) subsection \Karatsuba's Multiplication Algorithm for Polynomials\ theory Karatsuba_Multiplication imports Polynomial_Interpolation.Missing_Polynomial begin lemma karatsuba_main_step: fixes f :: "'a :: comm_ring_1 poly" assumes f: "f = monom_mult n f1 + f0" and g: "g = monom_mult n g1 + g0" shows "monom_mult (n + n) (f1 * g1) + (monom_mult n (f1 * g1 - (f1 - f0) * (g1 - g0) + f0 * g0) + f0 * g0) = f * g" unfolding assms by (auto simp: field_simps mult_monom monom_mult_def) lemma karatsuba_single_sided: fixes f :: "'a :: comm_ring_1 poly" assumes "f = monom_mult n f1 + f0" shows "monom_mult n (f1 * g) + f0 * g = f * g" unfolding assms by (auto simp: field_simps mult_monom monom_mult_def) definition split_at :: "nat \ 'a list \ 'a list \ 'a list" where [code del]: "split_at n xs = (take n xs, drop n xs)" lemma split_at_code[code]: "split_at n [] = ([],[])" "split_at n (x # xs) = (if n = 0 then ([], x # xs) else case split_at (n-1) xs of (bef,aft) \ (x # bef, aft))" unfolding split_at_def by (force, cases n, auto) fun coeffs_minus :: "'a :: ab_group_add list \ 'a list \ 'a list" where "coeffs_minus (x # xs) (y # ys) = ((x - y) # coeffs_minus xs ys)" | "coeffs_minus xs [] = xs" | "coeffs_minus [] ys = map uminus ys" text \The following constant determines at which size we will switch to the standard multiplication algorithm.\ definition karatsuba_lower_bound where [termination_simp]: "karatsuba_lower_bound = (7 :: nat)" fun karatsuba_main :: "'a :: comm_ring_1 list \ nat \ 'a list \ nat \ 'a poly" where "karatsuba_main f n g m = (if n \ karatsuba_lower_bound \ m \ karatsuba_lower_bound then let ff = poly_of_list f in foldr (\a p. smult a ff + pCons 0 p) g 0 else let n2 = n div 2 in if m > n2 then (case split_at n2 f of (f0,f1) \ case split_at n2 g of (g0,g1) \ let p1 = karatsuba_main f1 (n - n2) g1 (m - n2); p2 = karatsuba_main (coeffs_minus f1 f0) n2 (coeffs_minus g1 g0) n2; p3 = karatsuba_main f0 n2 g0 n2 in monom_mult (n2 + n2) p1 + (monom_mult n2 (p1 - p2 + p3) + p3)) else case split_at n2 f of (f0,f1) \ let p1 = karatsuba_main f1 (n - n2) g m; p2 = karatsuba_main f0 n2 g m in monom_mult n2 p1 + p2)" declare karatsuba_main.simps[simp del] lemma poly_of_list_split_at: assumes "split_at n f = (f0,f1)" shows "poly_of_list f = monom_mult n (poly_of_list f1) + poly_of_list f0" proof - from assms have id: "f1 = drop n f" "f0 = take n f" unfolding split_at_def by auto show ?thesis unfolding id proof (rule poly_eqI) fix i show "coeff (poly_of_list f) i = coeff (monom_mult n (poly_of_list (drop n f)) + poly_of_list (take n f)) i" unfolding monom_mult_def coeff_monom_mult coeff_add poly_of_list_def coeff_Poly by (cases "n \ i"; cases "i \ length f", auto simp: nth_default_nth nth_default_beyond) qed qed lemma coeffs_minus: "poly_of_list (coeffs_minus f1 f0) = poly_of_list f1 - poly_of_list f0" proof (rule poly_eqI, unfold poly_of_list_def coeff_diff coeff_Poly) fix i show "nth_default 0 (coeffs_minus f1 f0) i = nth_default 0 f1 i - nth_default 0 f0 i" proof (induct f1 f0 arbitrary: i rule: coeffs_minus.induct) case (1 x xs y ys) thus ?case by (cases i, auto) next case (3 x xs) thus ?case unfolding coeffs_minus.simps by (subst nth_default_map_eq[of uminus 0 0], auto) qed auto qed lemma karatsuba_main: "karatsuba_main f n g m = poly_of_list f * poly_of_list g" proof (induct n arbitrary: f g m rule: less_induct) case (less n f g m) note simp[simp] = karatsuba_main.simps[of f n g m] show ?case (is "?lhs = ?rhs") proof (cases "(n \ karatsuba_lower_bound \ m \ karatsuba_lower_bound) = False") case False hence lhs: "?lhs = foldr (\a p. smult a (poly_of_list f) + pCons 0 p) g 0" by simp have rhs: "?rhs = poly_of_list g * poly_of_list f" by simp also have "\ = foldr (\a p. smult a (poly_of_list f) + pCons 0 p) (strip_while ((=) 0) g) 0" unfolding times_poly_def fold_coeffs_def poly_of_list_impl .. also have "\ = ?lhs" unfolding lhs proof (induct g) case (Cons x xs) have "\x\set xs. x = 0 \ foldr (\a p. smult a (Poly f) + pCons 0 p) xs 0 = 0" by (induct xs, auto) thus ?case using Cons by (auto simp: cCons_def Cons) qed auto finally show ?thesis by simp next case True let ?n2 = "n div 2" have "?n2 < n" "n - ?n2 < n" using True unfolding karatsuba_lower_bound_def by auto note IH = less[OF this(1)] less[OF this(2)] obtain f1 f0 where f: "split_at ?n2 f = (f0,f1)" by force obtain g1 g0 where g: "split_at ?n2 g = (g0,g1)" by force note fsplit = poly_of_list_split_at[OF f] note gsplit = poly_of_list_split_at[OF g] show "?lhs = ?rhs" unfolding simp Let_def f g split IH True if_False coeffs_minus karatsuba_single_sided[OF fsplit] karatsuba_main_step[OF fsplit gsplit] by auto qed qed definition karatsuba_mult_poly :: "'a :: comm_ring_1 poly \ 'a poly \ 'a poly" where "karatsuba_mult_poly f g = (let ff = coeffs f; gg = coeffs g; n = length ff; m = length gg in (if n \ karatsuba_lower_bound \ m \ karatsuba_lower_bound then if n \ m then foldr (\a p. smult a g + pCons 0 p) ff 0 else foldr (\a p. smult a f + pCons 0 p) gg 0 else if n \ m then karatsuba_main gg m ff n else karatsuba_main ff n gg m))" lemma karatsuba_mult_poly: "karatsuba_mult_poly f g = f * g" proof - note d = karatsuba_mult_poly_def Let_def let ?len = "length (coeffs f) \ length (coeffs g)" show ?thesis (is "?lhs = ?rhs") proof (cases "length (coeffs f) \ karatsuba_lower_bound \ length (coeffs g) \ karatsuba_lower_bound") case True note outer = this show ?thesis proof (cases ?len) case True with outer have "?lhs = foldr (\a p. smult a g + pCons 0 p) (coeffs f) 0" unfolding d by auto also have "\ = ?rhs" unfolding times_poly_def fold_coeffs_def by auto finally show ?thesis . next case False with outer have "?lhs = foldr (\a p. smult a f + pCons 0 p) (coeffs g) 0" unfolding d by auto also have "\ = g * f" unfolding times_poly_def fold_coeffs_def by auto also have "\ = ?rhs" by simp finally show ?thesis . qed next case False note outer = this show ?thesis proof (cases ?len) case True with outer have "?lhs = karatsuba_main (coeffs g) (length (coeffs g)) (coeffs f) (length (coeffs f))" unfolding d by auto also have "\ = g * f" unfolding karatsuba_main by auto also have "\ = ?rhs" by auto finally show ?thesis . next case False with outer have "?lhs = karatsuba_main (coeffs f) (length (coeffs f)) (coeffs g) (length (coeffs g))" unfolding d by auto also have "\ = ?rhs" unfolding karatsuba_main by auto finally show ?thesis . qed qed qed lemma karatsuba_mult_poly_code_unfold[code_unfold]: "(*) = karatsuba_mult_poly" by (intro ext, unfold karatsuba_mult_poly, auto) text \The following declaration will resolve a race-conflict between @{thm karatsuba_mult_poly_code_unfold} and @{thm monom_mult_unfold}.\ lemmas karatsuba_monom_mult_code_unfold[code_unfold] = monom_mult_unfold[where f = "f :: 'a :: comm_ring_1 poly" for f, unfolded karatsuba_mult_poly_code_unfold] end