(* Title: CatBicat Author: Eugene W. Stark , 2021 Maintainer: Eugene W. Stark *) section "Bicategory of Categories" text \ In this section we construct a bicategory whose objects correspond to categories having arrows in a given type, whose 1-cells correspond to functors between such categories, and whose 2-cells correspond to natural transformations between such functors. We show that the bicategory that results from the construction is strict. \ theory CatBicat imports Bicategory.Strictness ConcreteBicategory begin locale catbicat begin abbreviation ARR where "ARR A B \ partial_magma.arr (functor_category.comp A B)" abbreviation MKARR where "MKARR \ concrete_category.MkArr" abbreviation MAP where "MAP \ concrete_category.Map" abbreviation DOM where "DOM \ concrete_category.Dom" abbreviation COD where "COD \ concrete_category.Cod" abbreviation NULL where "NULL \ concrete_category.Null" abbreviation OBJ where "OBJ \ Collect category" abbreviation HOM where "HOM \ functor_category.comp" abbreviation COMP where "COMP C B A \ \ \ if ARR B C \ \ ARR A B \ then MKARR (DOM \ o DOM \) (COD \ o COD \) (MAP \ o MAP \) else NULL" abbreviation ID where "ID A \ MKARR (identity_functor.map A) (identity_functor.map A) (identity_functor.map A)" abbreviation ASSOC where "ASSOC D C B A \ \ \ \ if ARR C D \ \ ARR B C \ \ ARR A B \ then MKARR (DOM \ o DOM \ o DOM \) (COD \ o COD \ o COD \) (MAP \ o MAP \ o MAP \) else NULL" text \ Although we are using the \concrete_bicategory\ construction to take care of some of the details, the proof is still awkward, because the locale assumptions we need to verify are all conditioned on universally quantified entities being in the set \OBJ\, and we cannot create interpretations to unpack these conditions until we are within a proof context where these entities have been fixed and the conditions have been introduced as assumptions. So, for example, to prove that \COMP\ has the required functoriality property, we have to fix \A\, \B\, and \C\ and introduce assumptions \A \ OBJ\, \B \ OBJ\, and \C \ OBJ\, and only then can we use these assumptions to interpret \A\, \B\, and \C\ as categories and \HOM A B\, \HOM B C\, and \HOM A C\ as functor categories. We have to go into a still deeper proof context before we can fix particular arguments \\\ and \\\ to \COMP C B A\, introduce the assumptions that they are arrows of their respective hom-categories, and finally use those assumptions to interpret them as natural transformations. At that point, we are finally in a position to apply the already-proved interchange law for natural transformations, which is the essential core of the functoriality property we need to show. \ sublocale concrete_bicategory OBJ HOM ID COMP ID ASSOC proof (unfold concrete_bicategory_def, intro conjI allI impI) show 1: "\(A :: 'a comp) (B :: 'a comp). \ A \ OBJ; B \ OBJ \ \ category (HOM A B)" using functor_category_def functor_category.is_category by auto show COMP: "\(A :: 'a comp) (B :: 'a comp) (C :: 'a comp). \ A \ OBJ; B \ OBJ; C \ OBJ \ \ binary_functor (HOM B C) (HOM A B) (HOM A C) (\(\, \). COMP C B A \ \)" proof - fix A :: "'a comp" and B :: "'a comp" and C :: "'a comp" assume A: "A \ OBJ" and B: "B \ OBJ" and C: "C \ OBJ" let ?COMP = "\(\, \). COMP C B A \ \" interpret A: category A using A by simp interpret B: category B using B by simp interpret C: category C using C by simp interpret BC: functor_category B C .. interpret AB: functor_category A B .. interpret AC: functor_category A C .. interpret BC_AB: product_category BC.comp AB.comp .. show "binary_functor (HOM B C) (HOM A B) (HOM A C) (\(\, \). COMP C B A \ \)" proof show "\\\. \ BC_AB.arr \\ \ ?COMP \\ = AC.null" using BC_AB.arr_char AC.null_char AC.arr_MkArr by auto fix \\ assume \\: "BC_AB.arr \\" interpret \: natural_transformation B C \AC.Dom (fst \\)\ \AC.Cod (fst \\)\ \MAP (fst \\)\ using \\ BC.arr_char [of "fst \\"] by simp interpret \: natural_transformation A B \AC.Dom (snd \\)\ \AC.Cod (snd \\)\ \MAP (snd \\)\ using \\ AB.arr_char [of "snd \\"] by simp interpret \\: natural_transformation A C \AC.Dom (fst \\) o AC.Dom (snd \\)\ \AC.Cod (fst \\) o AC.Cod (snd \\)\ \MAP (fst \\) o MAP (snd \\)\ using \.natural_transformation_axioms \.natural_transformation_axioms horizontal_composite by blast show "AC.arr (?COMP \\)" using \\ BC_AB.arr_char \\.natural_transformation_axioms \\.F.functor_axioms \\.G.functor_axioms AC.arr_MkArr by (cases \\) simp show "AC.dom (?COMP \\) = ?COMP (BC_AB.dom \\)" using \\ BC_AB.arr_char \\.natural_transformation_axioms \\.F.functor_axioms \\.G.functor_axioms AC.arr_MkArr by (cases \\) simp show "AC.cod (?COMP \\) = ?COMP (BC_AB.cod \\)" using \\ BC_AB.arr_char \\.natural_transformation_axioms \\.F.functor_axioms \\.G.functor_axioms AC.arr_MkArr by (cases \\) simp next fix \\ \\ assume seq: "BC_AB.seq \\ \\" interpret \: natural_transformation B C \BC.Dom (fst \\)\ \BC.Cod (fst \\)\ \MAP (fst \\)\ using seq BC_AB.seq_char BC_AB.arr_char BC.arr_char [of "fst \\"] AB.arr_char by auto interpret \: natural_transformation A B \AB.Dom (snd \\)\ \AB.Cod (snd \\)\ \MAP (snd \\)\ using seq BC_AB.seq_char BC_AB.arr_char BC.arr_char AB.arr_char [of "snd \\"] by auto interpret \\: natural_transformation A C \AC.Dom (fst \\) o AC.Dom (snd \\)\ \AC.Cod (fst \\) o AC.Cod (snd \\)\ \MAP (fst \\) o MAP (snd \\)\ using \.natural_transformation_axioms \.natural_transformation_axioms horizontal_composite by blast interpret \: natural_transformation B C \BC.Dom (fst \\)\ \BC.Cod (fst \\)\ \MAP (fst \\)\ using seq BC_AB.seq_char BC_AB.arr_char BC.arr_char [of "fst \\"] AB.arr_char by auto interpret \: natural_transformation A B \AB.Dom (snd \\)\ \AB.Cod (snd \\)\ \MAP (snd \\)\ using seq BC_AB.seq_char BC_AB.arr_char BC.arr_char AB.arr_char [of "snd \\"] by auto interpret \\: natural_transformation A C \AC.Dom (fst \\) o AC.Dom (snd \\)\ \AC.Cod (fst \\) o AC.Cod (snd \\)\ \MAP (fst \\) o MAP (snd \\)\ using \.natural_transformation_axioms \.natural_transformation_axioms horizontal_composite by blast interpret \o\: vertical_composite B C \BC.Dom (fst \\)\ \BC.Cod (fst \\)\ \BC.Cod (fst \\)\ \MAP (fst \\)\ \MAP (fst \\)\ using seq BC_AB.seq_char BC.seq_char \.natural_transformation_axioms by intro_locales (simp add: natural_transformation_def) interpret \o\: vertical_composite A B \AB.Dom (snd \\)\ \AB.Cod (snd \\)\ \AB.Cod (snd \\)\ \MAP (snd \\)\ \MAP (snd \\)\ using seq BC_AB.seq_char AB.seq_char \.natural_transformation_axioms by intro_locales (simp add: natural_transformation_def) show "?COMP (BC_AB.comp \\ \\) = AC.comp (?COMP \\) (?COMP \\)" proof - have "?COMP (BC_AB.comp \\ \\) = AC.MkArr (BC.Dom (fst (BC_AB.comp \\ \\)) \ AB.Dom (snd (BC_AB.comp \\ \\))) (BC.Cod (fst (BC_AB.comp \\ \\)) \ AB.Cod (snd (BC_AB.comp \\ \\))) (BC.Map (fst (BC_AB.comp \\ \\)) \ AB.Map (snd (BC_AB.comp \\ \\)))" using seq BC_AB.arr_char by (cases "BC_AB.comp \\ \\", simp) also have "... = AC.MkArr (BC.Dom (fst \\) \ AB.Dom (snd \\)) (BC.Cod (fst \\) \ AB.Cod (snd \\)) (vertical_composite.map B C (BC.Map (fst \\)) (AB.Map (fst \\)) \ vertical_composite.map A B (BC.Map (snd \\)) (AB.Map (snd \\)))" using seq BC_AB.comp_char BC_AB.seq_char BC_AB.arr_char BC.seq_char AB.seq_char BC.Dom_comp BC.Cod_comp BC.Map_comp AB.Dom_comp AB.Cod_comp AB.Map_comp by auto (* 7 sec *) also have "... = AC.MkArr (BC.Dom (fst \\) \ AB.Dom (snd \\)) (BC.Cod (fst \\) \ AB.Cod (snd \\)) (vertical_composite.map A C (AC.Map (fst \\) \ AC.Map (snd \\)) (AC.Map (fst \\) \ AC.Map (snd \\)))" using \.natural_transformation_axioms \.natural_transformation_axioms \.natural_transformation_axioms \.natural_transformation_axioms \o\.\.natural_transformation_axioms \o\.\.natural_transformation_axioms interchange by blast also have "... = AC.comp (AC.MkArr (AC.Dom (fst \\) \ AC.Dom (snd \\)) (AC.Cod (fst \\) \ AC.Cod (snd \\)) (AC.Map (fst \\) \ AC.Map (snd \\))) (AC.MkArr (AC.Dom (fst \\) \ AC.Dom (snd \\)) (AC.Cod (fst \\) \ AC.Cod (snd \\)) (AC.Map (fst \\) \ AC.Map (snd \\)))" using seq BC_AB.seq_char BC.seq_char AB.seq_char AC.comp_MkArr \\.natural_transformation_axioms \\.natural_transformation_axioms by simp also have "... = AC.comp (?COMP \\) (?COMP \\)" using seq BC_AB.seq_char BC_AB.arr_char BC.seq_char AB.seq_char BC.Dom_comp BC.Cod_comp BC.Map_comp AB.Dom_comp AB.Cod_comp AB.Map_comp by (cases \\, cases \\) simp finally show ?thesis by blast qed qed qed show 2: "\(A :: 'a comp). A \ OBJ \ partial_magma.ide (HOM A A) (ID A)" using concrete_category.ide_MkIde functor_category.is_concrete_category functor_category_def identity_functor.intro identity_functor.is_functor by fastforce show "\(A :: 'a comp). A \ OBJ \ partial_magma.in_hom (HOM A A) (ID A) (COMP A A A (ID A) (ID A)) (ID A)" proof - fix A :: "'a comp" assume A: "A \ OBJ" interpret A: category A using A by simp interpret AA: functor_category A A .. show "AA.in_hom (ID A) (COMP A A A (ID A) (ID A)) (ID A)" using A.is_functor by force qed show "\(A :: 'a comp). A \ OBJ \ category.iso (HOM A A) (ID A)" by (simp add: 1 2 category.ide_is_iso) show "\(A :: 'a comp) (B :: 'a comp) (C :: 'a comp) (D :: 'a comp). \ A \ OBJ; B \ OBJ; C \ OBJ; D \ OBJ \ \ natural_isomorphism (product_category.comp (HOM C D) (product_category.comp (HOM B C) (HOM A B))) (HOM A D) (\(f, g, h). COMP D B A (COMP D C B f g) h) (\(f, g, h). COMP D C A f (COMP C B A g h)) (\(f, g, h). ASSOC D C B A f g h)" proof - fix A :: "'a comp" and B :: "'a comp" and C :: "'a comp" and D :: "'a comp" assume A: "A \ OBJ" and B: "B \ OBJ" and C: "C \ OBJ" and D: "D \ OBJ" interpret A: category A using A by simp interpret B: category B using B by simp interpret C: category C using C by simp interpret D: category D using D by simp interpret AB: functor_category A B .. interpret BC: functor_category B C .. interpret CD: functor_category C D .. interpret AD: functor_category A D .. interpret BD: functor_category B D .. interpret AC: functor_category A C .. interpret BC_AB: product_category BC.comp AB.comp .. interpret CD_BC_AB: product_category CD.comp BC_AB.comp .. let ?L = "\(f, g, h). COMP D B A (COMP D C B f g) h" let ?R = "\(f, g, h). COMP D C A f (COMP C B A g h)" let ?A = "\(f, g, h). ASSOC D C B A f g h" have *: "\fgh fgh'. CD_BC_AB.seq fgh fgh' \ AD.comp (AD.MkArr (CD.Dom (fst fgh) \ BC.Dom (fst (snd fgh)) \ AB.Dom (snd (snd fgh))) (CD.Cod (fst fgh) \ BC.Cod (fst (snd fgh)) \ AB.Cod (snd (snd fgh))) (CD.Map (fst fgh) \ BC.Map (fst (snd fgh)) \ AB.Map (snd (snd fgh)))) (AD.MkArr (CD.Dom (fst fgh') \ BC.Dom (fst (snd fgh')) \ AB.Dom (snd (snd fgh'))) (CD.Cod (fst fgh') \ BC.Cod (fst (snd fgh')) \ AB.Cod (snd (snd fgh'))) (CD.Map (fst fgh') \ BC.Map (fst (snd fgh')) \ AB.Map (snd (snd fgh')))) = AD.MkArr (AD.Dom (fst fgh') \ AD.Dom (BC.comp (fst (snd fgh)) (fst (snd fgh'))) \ AD.Dom (AB.comp (snd (snd fgh)) (snd (snd fgh')))) (AD.Cod (fst fgh) \ AD.Cod (BC.comp (fst (snd fgh)) (fst (snd fgh'))) \ AD.Cod (AB.comp (snd (snd fgh)) (snd (snd fgh')))) (vertical_composite.map C D (AD.Map (fst fgh')) (AD.Map (fst fgh)) \ AD.Map (BC.comp (fst (snd fgh)) (fst (snd fgh'))) \ AD.Map (AB.comp (snd (snd fgh)) (snd (snd fgh'))))" proof - fix fgh fgh' assume seq: "CD_BC_AB.seq fgh fgh'" have fgh: "CD_BC_AB.arr fgh" using seq by blast have fgh': "CD_BC_AB.arr fgh'" using seq by blast let ?f = "fst (fgh)" and ?g = "fst (snd (fgh))" and ?h = "snd (snd fgh)" let ?f' = "fst (fgh')" and ?g' = "fst (snd (fgh'))" and ?h' = "snd (snd fgh')" let ?LHS = "AD.comp (AD.MkArr (CD.Dom ?f \ BC.Dom ?g \ AB.Dom ?h) (CD.Cod ?f \ BC.Cod ?g \ AB.Cod ?h) (CD.Map ?f \ BC.Map ?g \ AB.Map ?h)) (AD.MkArr (CD.Dom ?f' \ BC.Dom ?g' \ AB.Dom ?h') (CD.Cod ?f' \ BC.Cod ?g' \ AB.Cod ?h') (CD.Map ?f' \ BC.Map ?g' \ AB.Map ?h'))" let ?RHS = "AD.MkArr (AD.Dom ?f' \ AD.Dom (BC.comp ?g ?g') \ AD.Dom (AB.comp ?h ?h')) (AD.Cod ?f \ AD.Cod (BC.comp ?g ?g') \ AD.Cod (AB.comp ?h ?h')) (vertical_composite.map C D (AD.Map ?f') (AD.Map ?f) \ AD.Map (BC.comp ?g ?g') \ AD.Map (AB.comp ?h ?h'))" interpret f: natural_transformation C D \CD.Dom ?f\ \CD.Cod ?f\ \MAP ?f\ using fgh CD_BC_AB.arr_char CD.arr_char by simp interpret g: natural_transformation B C \BC.Dom ?g\ \BC.Cod ?g\ \MAP ?g\ using fgh CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp interpret h: natural_transformation A B \AB.Dom ?h\ \AB.Cod ?h\ \MAP ?h\ using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp interpret fg: natural_transformation B D \CD.Dom ?f o BC.Dom ?g\ \CD.Cod ?f o BC.Cod ?g\ \MAP ?f o MAP ?g\ using f.natural_transformation_axioms g.natural_transformation_axioms horizontal_composite by blast interpret fgh: natural_transformation A D \CD.Dom ?f o BC.Dom ?g o AB.Dom ?h\ \CD.Cod ?f o BC.Cod ?g o AB.Cod ?h\ \MAP ?f o MAP ?g o MAP ?h\ using f.natural_transformation_axioms g.natural_transformation_axioms h.natural_transformation_axioms horizontal_composite by blast interpret f': natural_transformation C D \CD.Dom ?f'\ \CD.Cod ?f'\ \MAP ?f'\ using fgh' CD_BC_AB.arr_char CD.arr_char by simp interpret g': natural_transformation B C \BC.Dom ?g'\ \BC.Cod ?g'\ \MAP ?g'\ using fgh' CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp interpret h': natural_transformation A B \AB.Dom ?h'\ \AB.Cod ?h'\ \MAP ?h'\ using fgh' CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp interpret fg': natural_transformation B D \CD.Dom ?f' o BC.Dom ?g'\ \CD.Cod ?f' o BC.Cod ?g'\ \MAP ?f' o MAP ?g'\ using f'.natural_transformation_axioms g'.natural_transformation_axioms horizontal_composite by blast interpret fgh': natural_transformation A D \CD.Dom ?f' o BC.Dom ?g' o AB.Dom ?h'\ \CD.Cod ?f' o BC.Cod ?g' o AB.Cod ?h'\ \MAP ?f' o MAP ?g' o MAP ?h'\ using f'.natural_transformation_axioms g'.natural_transformation_axioms h'.natural_transformation_axioms horizontal_composite by blast interpret ff': vertical_composite C D \CD.Dom ?f'\ \CD.Cod ?f'\ \CD.Cod ?f\ \MAP ?f'\ \MAP ?f\ using seq CD_BC_AB.seq_char [of fgh fgh'] CD.seq_char [of ?f ?f'] f.natural_transformation_axioms f'.natural_transformation_axioms C.category_axioms D.category_axioms f'.F.functor_axioms f'.G.functor_axioms f.G.functor_axioms by (metis vertical_composite.intro) interpret gg': vertical_composite B C \BC.Dom ?g'\ \BC.Cod ?g'\ \BC.Cod ?g\ \MAP ?g'\ \MAP ?g\ using seq CD_BC_AB.seq_char [of fgh fgh'] BC_AB.seq_char BC.seq_char [of ?g ?g'] g.natural_transformation_axioms g'.natural_transformation_axioms B.category_axioms C.category_axioms g'.F.functor_axioms g'.G.functor_axioms g.G.functor_axioms by (metis vertical_composite.intro) interpret hh': vertical_composite A B \AB.Dom ?h'\ \AB.Cod ?h'\ \AB.Cod ?h\ \MAP ?h'\ \MAP ?h\ using seq CD_BC_AB.seq_char [of fgh fgh'] BC_AB.seq_char AB.seq_char [of ?h ?h'] h.natural_transformation_axioms h'.natural_transformation_axioms A.category_axioms B.category_axioms h'.F.functor_axioms h'.G.functor_axioms h.G.functor_axioms by (metis vertical_composite.intro) have "?LHS = AD.MkArr (CD.Dom ?f' \ BC.Dom ?g' \ AB.Dom ?h') (CD.Cod ?f \ BC.Cod ?g \ AB.Cod ?h) (vertical_composite.map A D (CD.Map ?f' \ BC.Map ?g' \ AB.Map ?h') (CD.Map ?f \ BC.Map ?g \ AB.Map ?h))" using AD.comp_MkArr [of "CD.Dom ?f' \ BC.Dom ?g' \ AB.Dom ?h'" "CD.Cod ?f' \ BC.Cod ?g' \ AB.Cod ?h'" "CD.Map ?f' \ BC.Map ?g' \ AB.Map ?h'" "CD.Cod ?f \ BC.Cod ?g \ AB.Cod ?h" "CD.Map ?f \ BC.Map ?g \ AB.Map ?h"] using seq CD_BC_AB.seq_char CD.seq_char BC_AB.seq_char AB.arr_char BD.seq_char AB.seq_char BC.seq_char fg.natural_transformation_axioms fg'.natural_transformation_axioms fgh'.natural_transformation_axioms fgh.natural_transformation_axioms by auto also have "... = AD.MkArr (CD.Dom ?f' \ BC.Dom ?g' \ AB.Dom ?h') (CD.Cod ?f \ BC.Cod ?g \ AB.Cod ?h) (vertical_composite.map C D (CD.Map ?f') (CD.Map ?f) \ vertical_composite.map B C (BC.Map ?g') (BC.Map ?g) o vertical_composite.map A B (AB.Map ?h') (AB.Map ?h))" proof - have "vertical_composite.map A D (CD.Map ?f' \ BC.Map ?g' \ AB.Map ?h') (CD.Map ?f \ BC.Map ?g \ AB.Map ?h) = vertical_composite.map C D (CD.Map ?f') (CD.Map ?f) \ vertical_composite.map B C (BC.Map ?g') (BC.Map ?g) o vertical_composite.map A B (AB.Map ?h') (AB.Map ?h)" using interchange [of B C "BC.Dom ?g'" "BC.Cod ?g'" "BC.Map ?g'" "BC.Cod ?g" "BC.Map ?g" D "CD.Dom ?f'" "CD.Cod ?f'" "CD.Map ?f'" "CD.Cod ?f" "CD.Map ?f"] interchange f'.natural_transformation_axioms ff'.\.natural_transformation_axioms g'.natural_transformation_axioms gg'.\.natural_transformation_axioms fg'.natural_transformation_axioms gg'.\.natural_transformation_axioms h'.natural_transformation_axioms hh'.\.natural_transformation_axioms horizontal_composite by (metis (no_types, lifting)) (* 20 sec *) thus ?thesis by simp qed also have "... = ?RHS" by (metis (no_types, lifting) AB.Cod_comp AB.Dom_comp AB.Map_comp' AB.seq_char BC.Cod_comp BC.Dom_comp BC.Map_comp' BC.seq_char BC_AB.seq_char CD_BC_AB.seqE seq) finally show "?LHS = ?RHS" by fastforce qed interpret L: "functor" CD_BC_AB.comp AD.comp ?L proof interpret CD_BC: product_category CD.comp BC.comp .. interpret BD: functor_category B D .. fix fgh show "\ CD_BC_AB.arr fgh \ ?L fgh = AD.null" using AD.null_char BD.null_char by (cases fgh, auto) assume fgh: "CD_BC_AB.arr fgh" let ?f = "fst (fgh)" and ?g = "fst (snd (fgh))" and ?h = "snd (snd fgh)" interpret f: natural_transformation C D \CD.Dom ?f\ \CD.Cod ?f\ \MAP ?f\ using fgh CD_BC_AB.arr_char CD.arr_char by simp interpret g: natural_transformation B C \BC.Dom ?g\ \BC.Cod ?g\ \MAP ?g\ using fgh CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp interpret h: natural_transformation A B \AB.Dom ?h\ \AB.Cod ?h\ \MAP ?h\ using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp interpret fg: natural_transformation B D \CD.Dom ?f o BC.Dom ?g\ \CD.Cod ?f o BC.Cod ?g\ \MAP ?f o MAP ?g\ using f.natural_transformation_axioms g.natural_transformation_axioms horizontal_composite by blast interpret fgh: natural_transformation A D \CD.Dom ?f o BC.Dom ?g o AB.Dom ?h\ \CD.Cod ?f o BC.Cod ?g o AB.Cod ?h\ \MAP ?f o MAP ?g o MAP ?h\ using f.natural_transformation_axioms g.natural_transformation_axioms h.natural_transformation_axioms horizontal_composite by blast show 1: "AD.arr (?L fgh)" using fgh CD_BC_AB.arr_char CD.arr_char BC_AB.arr_char BC.arr_char AB.arr_char fg.natural_transformation_axioms fgh.natural_transformation_axioms fgh.F.functor_axioms fgh.G.functor_axioms AD.arr_char by (cases fgh, auto) show "AD.dom (?L fgh) = ?L (CD_BC_AB.dom fgh)" using fgh 1 fg.natural_transformation_axioms fg.F.functor_axioms by (cases fgh, auto) show "AD.cod (?L fgh) = ?L (CD_BC_AB.cod fgh)" using fgh 1 fg.natural_transformation_axioms fg.G.functor_axioms by (cases fgh, auto) next (* * TODO: It might be worth it to change the axioms for functor so that the assumption * for this case is "arr fgh \ arr fgh' \ dom fgh = cod fgh'". That would allow * proofs to overlap this last case with the rest when convenient, like here. *) fix fgh fgh' assume seq: "CD_BC_AB.seq fgh fgh'" have fgh: "CD_BC_AB.arr fgh" using seq by blast have fgh': "CD_BC_AB.arr fgh'" using seq by blast let ?f = "fst (fgh)" and ?g = "fst (snd (fgh))" and ?h = "snd (snd fgh)" interpret f: natural_transformation C D \CD.Dom ?f\ \CD.Cod ?f\ \MAP ?f\ using fgh CD_BC_AB.arr_char CD.arr_char by simp interpret g: natural_transformation B C \BC.Dom ?g\ \BC.Cod ?g\ \MAP ?g\ using fgh CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp interpret h: natural_transformation A B \AB.Dom ?h\ \AB.Cod ?h\ \MAP ?h\ using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp interpret fg: natural_transformation B D \CD.Dom ?f o BC.Dom ?g\ \CD.Cod ?f o BC.Cod ?g\ \MAP ?f o MAP ?g\ using f.natural_transformation_axioms g.natural_transformation_axioms horizontal_composite by blast let ?f' = "fst (fgh')" and ?g' = "fst (snd (fgh'))" and ?h' = "snd (snd fgh')" interpret f': natural_transformation C D \CD.Dom ?f'\ \CD.Cod ?f'\ \MAP ?f'\ using fgh' CD_BC_AB.arr_char CD.arr_char by simp interpret g': natural_transformation B C \BC.Dom ?g'\ \BC.Cod ?g'\ \MAP ?g'\ using fgh' CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp interpret h': natural_transformation A B \AB.Dom ?h'\ \AB.Cod ?h'\ \MAP ?h'\ using fgh' CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp interpret fg': natural_transformation B D \CD.Dom ?f' o BC.Dom ?g'\ \CD.Cod ?f' o BC.Cod ?g'\ \MAP ?f' o MAP ?g'\ using f'.natural_transformation_axioms g'.natural_transformation_axioms horizontal_composite by blast interpret ff': vertical_composite C D \CD.Dom ?f'\ \CD.Cod ?f'\ \CD.Cod ?f\ \MAP ?f'\ \MAP ?f\ using seq CD_BC_AB.seq_char [of fgh fgh'] CD.seq_char [of ?f ?f'] f.natural_transformation_axioms f'.natural_transformation_axioms C.category_axioms D.category_axioms f'.F.functor_axioms f'.G.functor_axioms f.G.functor_axioms by (unfold vertical_composite_def) presburger interpret gg': vertical_composite B C \CD.Dom ?g'\ \CD.Cod ?g'\ \CD.Cod ?g\ \MAP ?g'\ \MAP ?g\ using seq CD_BC_AB.seq_char [of fgh fgh'] CD.seq_char [of ?g ?g'] g.natural_transformation_axioms g'.natural_transformation_axioms C.category_axioms D.category_axioms by (unfold vertical_composite_def) (metis BC.seq_char BC_AB.seqE natural_transformation_def) interpret gg'off': natural_transformation B D \AC.Dom (fst fgh') \ AC.Dom (fst (snd fgh'))\ \AC.Cod (fst fgh) \ AC.Cod (fst (snd fgh))\ \ff'.map \ gg'.map\ by (meson ff'.natural_transformation_axioms gg'.natural_transformation_axioms horizontal_composite) show "?L (CD_BC_AB.comp fgh fgh') = AD.comp (?L fgh) (?L fgh')" proof - have "AD.comp (?L fgh) (?L fgh') = AD.comp (AD.MkArr (CD.Dom ?f \ BC.Dom ?g \ AB.Dom ?h) (CD.Cod ?f \ BC.Cod ?g \ AB.Cod ?h) (CD.Map ?f \ BC.Map ?g \ AB.Map ?h)) (AD.MkArr (CD.Dom ?f' \ BC.Dom ?g' \ AB.Dom ?h') (CD.Cod ?f' \ BC.Cod ?g' \ AB.Cod ?h') (CD.Map ?f' \ BC.Map ?g' \ AB.Map ?h'))" using seq CD_BC_AB.seq_char CD.seq_char BC_AB.seq_char AB.arr_char BD.seq_char AB.seq_char BC.seq_char fg.natural_transformation_axioms fg'.natural_transformation_axioms by (cases fgh, cases fgh') auto (* 20 sec *) also have "... = AD.MkArr (AD.Dom ?f' \ AD.Dom (BC.comp ?g ?g') \ AD.Dom (AB.comp ?h ?h')) (AD.Cod ?f \ AD.Cod (BC.comp ?g ?g') \ AD.Cod (AB.comp ?h ?h')) (vertical_composite.map C D (AD.Map ?f') (AD.Map ?f) \ AD.Map (BC.comp ?g ?g') \ AD.Map (AB.comp ?h ?h'))" using seq * [of fgh fgh'] by blast also have "... = ?L (CD_BC_AB.comp fgh fgh')" using fgh fgh' CD_BC_AB.comp_char CD.seq_char BC_AB.comp_char BC.seq_char AB.seq_char gg'off'.natural_transformation_axioms apply simp by (metis (no_types, lifting) BC_AB.seqE CD_BC_AB.seqE seq) finally show ?thesis by argo qed qed interpret R: "functor" CD_BC_AB.comp AD.comp ?R proof interpret CD_BC: product_category CD.comp BC.comp .. interpret AC: functor_category A C .. fix fgh show "\ CD_BC_AB.arr fgh \ ?R fgh = AD.null" using AD.null_char AC.null_char by (cases fgh, auto) assume fgh: "CD_BC_AB.arr fgh" let ?f = "fst (fgh)" and ?g = "fst (snd (fgh))" and ?h = "snd (snd fgh)" interpret f: natural_transformation C D \CD.Dom ?f\ \CD.Cod ?f\ \MAP ?f\ using fgh CD_BC_AB.arr_char CD.arr_char by simp interpret g: natural_transformation B C \BC.Dom ?g\ \BC.Cod ?g\ \MAP ?g\ using fgh CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp interpret h: natural_transformation A B \AB.Dom ?h\ \AB.Cod ?h\ \MAP ?h\ using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp interpret fg: natural_transformation B D \CD.Dom ?f o BC.Dom ?g\ \CD.Cod ?f o BC.Cod ?g\ \MAP ?f o MAP ?g\ using f.natural_transformation_axioms g.natural_transformation_axioms horizontal_composite by blast interpret gh: natural_transformation A C \BC.Dom ?g o AB.Dom ?h\ \BC.Cod ?g o AB.Cod ?h\ \MAP ?g o MAP ?h\ using g.natural_transformation_axioms h.natural_transformation_axioms horizontal_composite by blast interpret fgh: natural_transformation A D \CD.Dom ?f o (BC.Dom ?g o AB.Dom ?h)\ \CD.Cod ?f o (BC.Cod ?g o AB.Cod ?h)\ \MAP ?f o (MAP ?g o MAP ?h)\ using f.natural_transformation_axioms g.natural_transformation_axioms h.natural_transformation_axioms horizontal_composite by blast show 1: "AD.arr (?R fgh)" using fgh CD_BC_AB.arr_char AB.arr_char CD_BC.arr_char CD.arr_char BC.arr_char gh.natural_transformation_axioms fgh.natural_transformation_axioms fgh.F.functor_axioms fgh.G.functor_axioms AD.arr_char AC.arr_char by (cases fgh) (simp add: natural_transformation_def) show "AD.dom (?R fgh) = ?R (CD_BC_AB.dom fgh)" using fgh 1 gh.natural_transformation_axioms gh.F.functor_axioms by (cases fgh) auto show "AD.cod (?R fgh) = ?R (CD_BC_AB.cod fgh)" using fgh 1 gh.natural_transformation_axioms gh.G.functor_axioms by (cases fgh) auto next fix fgh fgh' assume seq: "CD_BC_AB.seq fgh fgh'" have fgh: "CD_BC_AB.arr fgh" using seq by blast have fgh': "CD_BC_AB.arr fgh'" using seq by blast let ?f = "fst (fgh)" and ?g = "fst (snd (fgh))" and ?h = "snd (snd fgh)" have f: "CD.arr ?f" and g: "BC.arr ?g" and h: "AB.arr ?h" using fgh by simp_all interpret f: natural_transformation C D \CD.Dom ?f\ \CD.Cod ?f\ \MAP ?f\ using fgh CD_BC_AB.arr_char CD.arr_char by simp interpret g: natural_transformation B C \BC.Dom ?g\ \BC.Cod ?g\ \MAP ?g\ using fgh CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by simp interpret h: natural_transformation A B \AB.Dom ?h\ \AB.Cod ?h\ \MAP ?h\ using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by simp interpret gh: natural_transformation A C \BC.Dom ?g o AB.Dom ?h\ \BC.Cod ?g o AB.Cod ?h\ \MAP ?g o MAP ?h\ using g.natural_transformation_axioms h.natural_transformation_axioms horizontal_composite by blast let ?f' = "fst (fgh')" and ?g' = "fst (snd (fgh'))" and ?h' = "snd (snd fgh')" have f': "CD.arr ?f'" and g': "BC.arr ?g'" and h': "AB.arr ?h'" using fgh' by simp_all interpret f': natural_transformation C D \CD.Dom ?f'\ \CD.Cod ?f'\ \MAP ?f'\ using seq CD_BC_AB.arr_char CD.arr_char by blast interpret g': natural_transformation B C \BC.Dom ?g'\ \BC.Cod ?g'\ \MAP ?g'\ using seq CD_BC_AB.arr_char BC_AB.arr_char BC.arr_char by blast interpret h': natural_transformation A B \AB.Dom ?h'\ \AB.Cod ?h'\ \MAP ?h'\ using seq CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char by blast interpret gh': natural_transformation A C \BC.Dom ?g' o AB.Dom ?h'\ \BC.Cod ?g' o AB.Cod ?h'\ \MAP ?g' o MAP ?h'\ using g'.natural_transformation_axioms h'.natural_transformation_axioms horizontal_composite by blast interpret fg': natural_transformation B D \CD.Dom ?f' o BC.Dom ?g'\ \CD.Cod ?f' o BC.Cod ?g'\ \MAP ?f' o MAP ?g'\ using f'.natural_transformation_axioms g'.natural_transformation_axioms horizontal_composite by blast interpret ff': vertical_composite C D \CD.Dom ?f'\ \CD.Cod ?f'\ \CD.Cod ?f\ \MAP ?f'\ \MAP ?f\ using seq CD_BC_AB.seq_char [of fgh fgh'] CD.seq_char [of ?f ?f'] f.natural_transformation_axioms f'.natural_transformation_axioms C.category_axioms D.category_axioms f'.F.functor_axioms f'.G.functor_axioms f.G.functor_axioms by (metis vertical_composite.intro) interpret gg': vertical_composite B C \BC.Dom ?g'\ \BC.Cod ?g'\ \BC.Cod ?g\ \MAP ?g'\ \MAP ?g\ using seq CD_BC_AB.seq_char [of fgh fgh'] BC_AB.seq_char BC.seq_char [of ?g ?g'] g.natural_transformation_axioms g'.natural_transformation_axioms B.category_axioms C.category_axioms g'.F.functor_axioms g'.G.functor_axioms g.G.functor_axioms by (metis vertical_composite.intro) interpret hh': vertical_composite A B \AB.Dom ?h'\ \AB.Cod ?h'\ \AB.Cod ?h\ \MAP ?h'\ \MAP ?h\ using seq CD_BC_AB.seq_char [of fgh fgh'] BC_AB.seq_char AB.seq_char [of ?h ?h'] h.natural_transformation_axioms h'.natural_transformation_axioms A.category_axioms B.category_axioms h'.F.functor_axioms h'.G.functor_axioms h.G.functor_axioms by (metis vertical_composite.intro) show "?R (CD_BC_AB.comp fgh fgh') = AD.comp (?R fgh) (?R fgh')" proof - have "AD.comp (?R fgh) (?R fgh') = AD.comp (AD.MkArr (CD.Dom ?f \ BC.Dom ?g \ AB.Dom ?h) (CD.Cod ?f \ BC.Cod ?g \ AB.Cod ?h) (CD.Map ?f \ BC.Map ?g \ AB.Map ?h)) (AD.MkArr (CD.Dom ?f' \ BC.Dom ?g' \ AB.Dom ?h') (CD.Cod ?f' \ BC.Cod ?g' \ AB.Cod ?h') (CD.Map ?f' \ BC.Map ?g' \ AB.Map ?h'))" using fgh fgh' gh.natural_transformation_axioms gh'.natural_transformation_axioms apply (cases fgh, cases fgh') by (simp add: o_assoc) also have "... = AD.MkArr (AD.Dom ?f' \ AD.Dom (BC.comp ?g ?g') \ AD.Dom (AB.comp ?h ?h')) (AD.Cod ?f \ AD.Cod (BC.comp ?g ?g') \ AD.Cod (AB.comp ?h ?h')) (vertical_composite.map C D (AD.Map ?f') (AD.Map ?f) \ AD.Map (BC.comp ?g ?g') \ AD.Map (AB.comp ?h ?h'))" using seq * [of fgh fgh'] by blast also have "... = AD.MkArr (AD.Dom ?f' \ BC.Dom ?g' \ AB.Dom ?h') (AD.Cod ?f \ BC.Cod ?g \ AB.Cod ?h) (vertical_composite.map C D (AD.Map ?f') (AD.Map ?f) \ AD.Map (BC.comp ?g ?g') \ AD.Map (AB.comp ?h ?h'))" using seq CD_BC_AB.seq_char BC_AB.seq_char BC.Dom_comp AB.Dom_comp BC.Cod_comp AB.Cod_comp BC.seq_char AB.seq_char by (simp add: o_assoc) also have "... = AD.MkArr (AD.Dom ?f' \ BC.Dom ?g' \ AB.Dom ?h') (AD.Cod ?f \ BC.Cod ?g \ AB.Cod ?h) (vertical_composite.map C D (AD.Map ?f') (AD.Map ?f) o vertical_composite.map B C (BC.Map ?g') (BC.Map ?g) o vertical_composite.map A B (AB.Map ?h') (AB.Map ?h))" using seq CD_BC_AB.seq_char BC_AB.seq_char BC.Map_comp AB.Map_comp BC.seq_char AB.seq_char by (cases fgh) simp also have "... = AD.MkArr (AD.Dom ?f' \ BC.Dom ?g' \ AB.Dom ?h') (AD.Cod ?f \ BC.Cod ?g \ AB.Cod ?h) (CD.Map (CD.comp ?f ?f') o BC.Map (BC.comp ?g ?g') o AB.Map (AB.comp ?h ?h'))" using seq CD_BC_AB.seq_char BC_AB.seq_char CD.Map_comp BC.Map_comp AB.Map_comp CD.seq_char BC.seq_char AB.seq_char by simp also have "... = AD.MkArr (CD.Dom (CD.comp ?f ?f') \ (BC.Dom (BC.comp ?g ?g') \ AB.Dom (AB.comp ?h ?h'))) (CD.Cod (CD.comp ?f ?f') \ (BC.Cod (BC.comp ?g ?g') \ AB.Cod (AB.comp ?h ?h'))) (CD.Map (CD.comp ?f ?f') \ (BC.Map (BC.comp ?g ?g') \ AB.Map (AB.comp ?h ?h')))" using seq CD_BC_AB.seq_char BC_AB.seq_char BC.Dom_comp AB.Dom_comp BC.Cod_comp AB.Cod_comp CD.seq_char BC.seq_char AB.seq_char by (cases fgh) (simp add: o_assoc) also have "... = ?R (CD.comp ?f ?f', BC.comp ?g ?g', AB.comp ?h ?h')" proof - have "CD.seq ?f ?f' \ BC.seq ?g ?g' \ AB.seq ?h ?h'" using seq CD_BC_AB.seq_char BC_AB.seq_char CD.seq_char BC.seq_char AB.seq_char by simp moreover have "natural_transformation A C (AC.Dom (BC.comp ?g ?g') \ AC.Dom (AB.comp ?h ?h')) (AC.Cod (BC.comp ?g ?g') \ AC.Cod (AB.comp ?h ?h')) (AC.Map (BC.comp ?g ?g') \ AC.Map (AB.comp ?h ?h'))" using horizontal_composite calculation by blast ultimately show ?thesis by simp qed also have "... = ?R (CD_BC_AB.comp fgh fgh')" using seq fgh fgh' CD_BC_AB.comp_simp BC_AB.comp_simp CD_BC_AB.seq_char BC_AB.seq_char by (cases fgh) simp finally show ?thesis by argo qed qed interpret A: natural_transformation CD_BC_AB.comp AD.comp ?L ?R ?A proof interpret CD_BC: product_category CD.comp BC.comp .. fix fgh show "\ CD_BC_AB.arr fgh \ ?A fgh = AD.null" using AD.null_char BD.null_char by (cases fgh, auto) assume fgh: "CD_BC_AB.arr fgh" show "AD.dom (?A fgh) = ?L (CD_BC_AB.dom fgh)" using fgh AD.dom_char AB.arr_char BC.arr_char CD.arr_char AB.dom_char BC.dom_char CD.dom_char apply (cases fgh) apply simp by (metis (no_types, lifting) functor_is_transformation horizontal_composite) show "AD.cod (?A fgh) = ?R (CD_BC_AB.cod fgh)" using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char CD.arr_char AD.cod_char AB.arr_char BC.arr_char CD.arr_char AB.cod_char BC.cod_char CD.cod_char apply (cases fgh) apply (simp add: o_assoc) by (metis (no_types, lifting) functor_is_transformation horizontal_composite) show "AD.comp (?A (CD_BC_AB.cod fgh)) (?L fgh) = ?A fgh" proof - let ?f = "fst fgh" and ?g = "fst (snd fgh)" and ?h = "snd (snd fgh)" have 1: "natural_transformation B D (CD.Dom ?f \ BC.Dom ?g) (CD.Cod ?f \ BC.Cod ?g) (CD.Map ?f \ BC.Map ?g)" using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char CD.arr_char apply (cases fgh) apply (simp add: o_assoc) by (metis (no_types, lifting) horizontal_composite) have 2: "natural_transformation A D (AC.Dom ?f \ AC.Dom ?g \ AC.Dom ?h) (AC.Cod ?f \ AC.Cod ?g \ AC.Cod ?h) (AC.Map ?f \ AC.Map ?g \ AC.Map ?h)" using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char CD.arr_char apply (cases fgh) apply (simp add: o_assoc) by (metis (no_types, lifting) horizontal_composite) have "AD.comp (?A (CD_BC_AB.cod fgh)) (?L fgh) = AD.comp (AD.MkIde (CD.Cod ?f \ BC.Cod ?g \ AB.Cod ?h)) (AD.MkArr (CD.Dom ?f \ BC.Dom ?g \ AB.Dom ?h) (CD.Cod ?f \ BC.Cod ?g \ AB.Cod ?h) (CD.Map ?f \ BC.Map ?g \ AB.Map ?h))" using 1 2 fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char CD.arr_char apply (cases fgh) apply (simp add: o_assoc) by (metis AB.cod_char BC.MkIde_Cod CD.arr.simps(2) CD.arr_cod_iff_arr) also have "... = ?A fgh" using 2 fgh by (cases fgh) (simp add: o_assoc AD.comp_cod_arr) finally show ?thesis by simp qed show "AD.comp (?R fgh) (?A (CD_BC_AB.dom fgh)) = ?A fgh" proof - let ?f = "fst fgh" and ?g = "fst (snd fgh)" and ?h = "snd (snd fgh)" have 1: "natural_transformation A C (AC.Dom ?g \ AC.Dom ?h) (AC.Cod ?g \ AC.Cod ?h) (AC.Map ?g \ AC.Map ?h)" using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char CD.arr_char apply (cases fgh) apply (simp add: o_assoc) by (metis (no_types, lifting) horizontal_composite) have 2: "natural_transformation A D (AC.Dom ?f \ AC.Dom ?g \ AC.Dom ?h) (AC.Cod ?f \ AC.Cod ?g \ AC.Cod ?h) (AC.Map ?f \ AC.Map ?g \ AC.Map ?h)" using fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char CD.arr_char apply (cases fgh) apply (simp add: o_assoc) by (metis (no_types, lifting) horizontal_composite) have "AD.comp (?R fgh) (?A (CD_BC_AB.dom fgh)) = AD.comp (AD.MkArr (CD.Dom ?f \ BC.Dom ?g \ AB.Dom ?h) (CD.Cod ?f \ BC.Cod ?g \ AB.Cod ?h) (CD.Map ?f \ BC.Map ?g \ AB.Map ?h)) (AD.MkIde (CD.Dom ?f \ BC.Dom ?g \ AB.Dom ?h))" using 1 2 fgh CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char CD.arr_char apply (cases fgh) apply (simp add: o_assoc) by (metis AB.dom_char BC.MkIde_Dom CD.arr.simps(2) CD.arr_dom_iff_arr) also have "... = ?A fgh" using 2 fgh by (cases fgh) (simp add: o_assoc AD.comp_arr_dom) finally show ?thesis by simp qed qed show "natural_isomorphism CD_BC_AB.comp AD.comp ?L ?R ?A" proof fix abc assume abc: "CD_BC_AB.ide abc" show "AD.iso (?A abc)" proof - interpret A_abc: natural_transformation A D \BD.Dom (?A abc)\ \BD.Cod (?A abc)\ \BD.Map (?A abc)\ using abc CD_BC_AB.ideD(1) CD_BC_AB.arr_char BC_AB.arr_char AB.arr_char BC.arr_char CD.arr_char apply (cases abc) apply (simp add: o_assoc) by (metis AB.null_char BC.null_char CD.null_char functor_is_transformation horizontal_composite) interpret A_abc: natural_isomorphism A D \BD.Dom (?A abc)\ \BD.Cod (?A abc)\ \BD.Map (?A abc)\ proof - have "\a'. A.ide a' \ D.iso (CD.Map (fst abc) (BC.Map (fst (snd abc)) (AB.Map (snd (snd abc)) a')))" proof - fix a' assume a': "A.ide a'" have "BC.ide (fst (snd abc)) \ AB.ide (snd (snd abc))" using abc by force hence "C.iso (AC.Map (fst (snd abc)) (AC.Map (snd (snd abc)) a'))" using a' by (metis (no_types) A.ide_is_iso AB.ide_char BC.ide_char functor.preserves_iso) thus "D.iso (AC.Map (fst abc) (AC.Map (fst (snd abc)) (AC.Map (snd (snd abc)) a')))" by (meson CD.ide_char CD_BC_AB.ide_char abc functor.preserves_iso) qed thus "natural_isomorphism A D (BD.Dom (?A abc)) (BD.Cod (?A abc)) (BD.Map (?A abc))" apply unfold_locales using abc CD_BC_AB.iso_char BC_AB.iso_char A.ide_is_iso functor.preserves_iso by (cases abc) simp qed have "?A abc \ AD.null" using abc by (metis (no_types, lifting) A.preserves_reflects_arr AD.not_arr_null CD_BC_AB.ideD(1)) moreover have "natural_isomorphism A D (BD.Dom (?A abc)) (BD.Cod (?A abc)) (BD.Map (?A abc))" .. ultimately show ?thesis by simp qed qed qed show "\(A :: 'a comp) (B :: 'a comp). \ A \ OBJ; B \ OBJ \ \ fully_faithful_functor (HOM A B) (HOM A B) (\f. if partial_magma.arr (HOM A B) f then COMP B B A (ID B) f else partial_magma.null (HOM A B))" proof - fix A :: "'a comp" and B :: "'a comp" assume A: "A \ OBJ" and B: "B \ OBJ" interpret A: category A using A by simp interpret B: category B using B by simp interpret AB: functor_category A B .. interpret BB: functor_category B B .. let ?L = "\f. if partial_magma.arr (HOM A B) f then COMP B B A (ID B) f else partial_magma.null (HOM A B)" have "?L = AB.map" using AB.arr_char B.functor_axioms AB.MkArr_Map AB.is_extensional by force thus "fully_faithful_functor AB.comp AB.comp ?L" by (simp add: AB.is_fully_faithful) qed show "\(A :: 'a comp) (B :: 'a comp). \ A \ OBJ; B \ OBJ \ \ fully_faithful_functor (HOM A B) (HOM A B) (\f. if partial_magma.arr (HOM A B) f then COMP B A A f (ID A) else partial_magma.null (HOM A B))" proof - fix A :: "'a comp" and B :: "'a comp" assume A: "A \ OBJ" and B: "B \ OBJ" interpret A: category A using A by simp interpret B: category B using B by simp interpret AB: functor_category A B .. interpret AA: functor_category A A .. interpret BB: functor_category B B .. let ?R = "\f. if partial_magma.arr (HOM A B) f then COMP B A A f (ID A) else partial_magma.null (HOM A B)" have "?R = AB.map" proof fix f have "\ AB.arr f \ ?R f = AB.map f" using AB.is_extensional by simp moreover have "AB.arr f \ ?R f = AB.map f" proof - assume f: "AB.arr f" have "?R f = BB.MkArr (BB.Dom f \ A.map) (BB.Cod f \ A.map) (BB.Map f \ A.map)" using f AB.arr_char BB.ide_MkIde BB.arr_char A.functor_axioms by simp also have "... = AB.map f" using f AB.arr_char AB.MkArr_Map by force finally show "?R f = AB.map f" by blast qed ultimately show "?R f = AB.map f" by blast qed thus "fully_faithful_functor AB.comp AB.comp ?R" by (simp add: AB.is_fully_faithful) qed show "\(A :: 'a comp) (B :: 'a comp) (C :: 'a comp) (D :: 'a comp) (E :: 'a comp) f g h k. \ A \ OBJ; B \ OBJ; C \ OBJ; D \ OBJ; E \ OBJ; partial_magma.ide (HOM D E) f; partial_magma.ide (HOM C D) g; partial_magma.ide (HOM B C) h; partial_magma.ide (HOM A B) k \ \ HOM A E (COMP E D A f (ASSOC D C B A g h k)) (HOM A E (ASSOC E D B A f (COMP D C B g h) k) (COMP E B A (ASSOC E D C B f g h) k)) = HOM A E (ASSOC E D C A f g (COMP C B A h k)) (ASSOC E C B A (COMP E D C f g) h k)" proof - fix A :: "'a comp" and B :: "'a comp" and C :: "'a comp" and D :: "'a comp" and E :: "'a comp" fix f g h k assume A: "A \ OBJ" and B: "B \ OBJ" and C: "C \ OBJ" and D: "D \ OBJ" and E: "E \ OBJ" assume f: "partial_magma.ide (HOM D E) f" assume g: "partial_magma.ide (HOM C D) g" assume h: "partial_magma.ide (HOM B C) h" assume k: "partial_magma.ide (HOM A B) k" interpret A: category A using A by simp interpret B: category B using B by simp interpret C: category C using C by simp interpret D: category D using D by simp interpret E: category E using E by simp interpret AB: functor_category A B .. interpret BC: functor_category B C .. interpret CD: functor_category C D .. interpret DE: functor_category D E .. interpret BD: functor_category B D .. interpret AD: functor_category A D .. interpret CE: functor_category C E .. interpret AC: functor_category A C .. interpret BE: functor_category B E .. interpret AE: functor_category A E .. interpret f: natural_transformation D E \DE.Dom f\ \DE.Cod f\ \MAP f\ using f DE.arr_char by simp interpret g: natural_transformation C D \CD.Dom g\ \CD.Cod g\ \MAP g\ using g CD.arr_char by simp interpret h: natural_transformation B C \BC.Dom h\ \BC.Cod h\ \MAP h\ using h BC.arr_char by simp interpret k: natural_transformation A B \AB.Dom k\ \AB.Cod k\ \MAP k\ using k AB.arr_char by simp have 0: "natural_transformation A E (DE.Map f \ CD.Map g \ BC.Map h \ AB.Map k) (DE.Map f \ CD.Map g \ BC.Map h \ AB.Map k) (DE.Map f \ CD.Map g \ BC.Map h \ AB.Map k)" using f.natural_transformation_axioms g.natural_transformation_axioms h.natural_transformation_axioms k.natural_transformation_axioms f g h k AB.ide_char BC.ide_char CD.ide_char DE.ide_char horizontal_composite by (metis (no_types, lifting)) have 1: "natural_transformation B D (CD.Map g \ BC.Map h) (CD.Map g \ BC.Map h) (CD.Map g \ BC.Map h)" using g.natural_transformation_axioms h.natural_transformation_axioms g h BC.ide_char CD.ide_char horizontal_composite by (metis (no_types, lifting)) have 2: "natural_transformation B E (DE.Map f \ CD.Map g \ BC.Map h) (DE.Map f \ CD.Map g \ BC.Map h) (DE.Map f \ CD.Map g \ BC.Map h)" using 1 f.natural_transformation_axioms f DE.ide_char horizontal_composite o_assoc by (metis (no_types, lifting)) have 3: "natural_transformation A C (BC.Map h \ AB.Map k) (BC.Map h \ AB.Map k) (BC.Map h \ AB.Map k)" using k.natural_transformation_axioms h.natural_transformation_axioms k h AB.ide_char BC.ide_char horizontal_composite by metis have 4: "natural_transformation C E (DE.Map f \ CD.Map g) (DE.Map f \ CD.Map g) (DE.Map f \ CD.Map g)" using f g f.natural_transformation_axioms g.natural_transformation_axioms CD.ide_char DE.ide_char horizontal_composite by metis have "HOM A E (COMP E D A f (ASSOC D C B A g h k)) (HOM A E (ASSOC E D B A f (COMP D C B g h) k) (COMP E B A (ASSOC E D C B f g h) k)) = AE.MkIde (DE.Map f \ CD.Map g \ BC.Map h \ AB.Map k)" proof - have "functor B E (DE.Map f \ CD.Map g \ BC.Map h)" using 2 natural_transformation_def by blast moreover have "functor A D (CD.Map g \ BC.Map h \ AB.Map k)" using k 1 AB.ide_char horizontal_composite k.natural_transformation_axioms natural_transformation_def by (metis (no_types, lifting)) ultimately show ?thesis using f g h k 0 1 2 by (simp add: o_assoc) qed also have "... = HOM A E (ASSOC E D C A f g (COMP C B A h k)) (ASSOC E C B A (COMP E D C f g) h k)" using f g h k 0 3 4 AC.ide_MkIde CE.ide_MkIde by (simp add: o_assoc) finally show "HOM A E (COMP E D A f (ASSOC D C B A g h k)) (HOM A E (ASSOC E D B A f (COMP D C B g h) k) (COMP E B A (ASSOC E D C B f g h) k)) = HOM A E (ASSOC E D C A f g (COMP C B A h k)) (ASSOC E C B A (COMP E D C f g) h k)" by blast qed qed (* 15 sec *) lemma is_concrete_bicategory: shows "concrete_bicategory OBJ HOM ID COMP ID ASSOC" .. lemma unit_simp: assumes "obj a" shows "\ a = a" by (metis (mono_tags, lifting) \_def assms obj_char) lemma assoc_simp: assumes "ide f" and "ide g" and "ide h" and "src f = trg g" and "src g = trg h" shows "\ f g h = hcomp f (hcomp g h)" proof - let ?A = "Src h" and ?B = "Trg h" and ?C = "Trg g" and ?D = "Trg f" have 1: "Src f = Trg g \ Src g = Trg h" using assms by (simp add: src_def trg_def) interpret A: category ?A using assms Src_in_Obj [of h] by simp interpret B: category ?B using assms Trg_in_Obj [of h] by simp interpret C: category ?C using assms Trg_in_Obj [of g] by simp interpret D: category ?D using assms Trg_in_Obj [of f] by simp interpret AB: functor_category ?A ?B .. interpret BC: functor_category ?B ?C .. interpret CD: functor_category ?C ?D .. interpret AD: functor_category ?A ?D .. interpret BC_AB: product_category BC.comp AB.comp .. interpret CD_BC_AB: product_category CD.comp BC_AB.comp .. interpret f: "functor" ?C ?D \CD.Map (Map f)\ using assms 1 ide_char'' [of f] arr_char [of f] CD.ide_char by simp interpret g: "functor" ?B ?C \BC.Map (Map g)\ using assms 1 ide_char'' [of g] arr_char [of g] CD.ide_char by simp interpret h: "functor" ?A ?B \AB.Map (Map h)\ using assms 1 ide_char'' [of h] arr_char [of h] CD.ide_char by simp have "\ f g h = MkCell ?A ?D (AD.MkArr (AD.Dom (Map f) \ AD.Dom (Map g) \ AD.Dom (Map h)) (AD.Cod (Map f) \ AD.Cod (Map g) \ AD.Cod (Map h)) (AD.Map (Map f) \ AD.Map (Map g) \ AD.Map (Map h)))" using assms 1 ide_char'' \_simp_ide [of f g h] arr_char [of f] arr_char [of g] arr_char [of h] by simp moreover have "AD.ide (AD.MkArr (CD.Dom (Map f) \ BC.Dom (Map g) \ AB.Dom (Map h)) (CD.Cod (Map f) \ BC.Cod (Map g) \ AB.Cod (Map h)) (CD.Map (Map f) \ BC.Map (Map g) \ AB.Map (Map h)))" proof - have "functor ?A ?D (CD.Map (Map f) \ BC.Map (Map g) \ AB.Map (Map h))" using f.functor_axioms g.functor_axioms h.functor_axioms functor_comp by blast hence "AD.ide (AD.MkArr (CD.Map (Map f) \ BC.Map (Map g) \ AB.Map (Map h)) (CD.Map (Map f) \ BC.Map (Map g) \ AB.Map (Map h)) (CD.Map (Map f) \ BC.Map (Map g) \ AB.Map (Map h)))" using AD.ide_char AD.null_char by simp thus ?thesis using assms 1 ide_char'' [of f] CD.ide_char [of "Map f"] ide_char'' [of g] BC.ide_char [of "Map g"] ide_char'' [of h] AB.ide_char [of "Map h"] by presburger qed moreover have "arr (\ f g h)" using assms by simp ultimately have "ide (\ f g h)" using ide_char''' [of "\ f g h"] by auto hence "\ f g h = cod (\ f g h)" by simp thus "\ f g h = hcomp f (hcomp g h)" using assms by simp qed lemma is_strict_bicategory: shows "strict_bicategory vcomp hcomp \ \ src trg" proof - have "\f :: ('a comp, ('a, 'a) functor_category.arr) cell. ide f \ hcomp f (src f) = f" proof - fix f :: "('a comp, ('a, 'a) functor_category.arr) cell" assume f: "ide f" let ?A = "Src f" and ?B = "Trg f" interpret A: category ?A using f Src_in_Obj [of f] by simp interpret B: category ?B using f Trg_in_Obj [of f] by simp interpret AA: functor_category ?A ?A .. interpret AB: functor_category ?A ?B .. have 1: "functor ?A ?B (AB.Cod (Map f)) \ functor ?A ?B (AB.Dom (Map f)) \ functor ?A ?B (AB.Map (Map f))" using f ide_char''' AB.ide_char [of "Map f"] ide_char'' [of f] arr_char [of f] by auto have "hcomp f (src f) = MkCell ?A ?B (Map f)" unfolding hcomp_def src_def using f 1 AB.arr_char AB.null_char AB.ide_char obj_MkObj [of "Src f"] obj_def functor_is_transformation ide_char''' AB.ide_MkIde Src_in_Obj [of f] obj_MkObj obj_def AB.null_char arr_Map [of f] A.functor_axioms AB.MkArr_Map arr_Map by auto also have "... = f" using f MkCell_Map [of f] not_arr_null ideD(1) [of f] by fastforce finally show "hcomp f (src f) = f" by blast qed moreover have "\f :: ('a comp, ('a, 'a) functor_category.arr) cell. ide f \ hcomp (trg f) f = f" proof - fix f :: "('a comp, ('a, 'a) functor_category.arr) cell" assume f: "ide f" let ?A = "Src f" and ?B = "Trg f" interpret A: category ?A using f Src_in_Obj [of f] by simp interpret B: category ?B using f Trg_in_Obj [of f] by simp interpret BB: functor_category ?B ?B .. interpret AB: functor_category ?A ?B .. have 1: "functor ?A ?B (AB.Cod (Map f)) \ functor ?A ?B (AB.Dom (Map f)) \ functor ?A ?B (AB.Map (Map f))" using f ide_char''' AB.ide_char [of "Map f"] ide_char'' [of f] arr_char [of f] by auto have "hcomp (trg f) f = MkCell ?A ?B (Map f)" unfolding hcomp_def trg_def using f 1 AB.arr_char AB.null_char AB.ide_char obj_MkObj [of "Trg f"] obj_def functor_is_transformation ide_char''' AB.ide_MkIde Trg_in_Obj [of f] obj_MkObj obj_def AB.null_char arr_Map [of f] B.functor_axioms AB.MkArr_Map arr_Map by auto also have "... = f" using f MkCell_Map [of f] not_arr_null ideD(1) [of f] by fastforce finally show "hcomp (trg f) f = f" by blast qed moreover have "\a. obj a \ ide (\ a)" using \_def by (metis (mono_tags, lifting) obj_MkObj_Src objE obj_def) moreover have "\(f :: ('a comp, ('a, 'a) functor_category.arr) cell) g h. \ ide f; ide g; ide h; src f = trg g; src g = trg h \ \ ide (\ f g h)" by (simp add: assoc_simp) ultimately show ?thesis using is_strict_if by blast qed sublocale strict_bicategory vcomp hcomp \ \ src trg using is_strict_bicategory by simp end end