/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import analysis.box_integral.basic import measure_theory.measure.regular /-! # McShane integrability vs Bochner integrability In this file we prove that any Bochner integrable function is McShane integrable (hence, it is Henstock and `⊥` integrable) with the same integral. The proof is based on [Russel A. Gordon, *The integrals of Lebesgue, Denjoy, Perron, and Henstock*][Gordon55]. ## Tags integral, McShane integral, Bochner integral -/ open_locale classical nnreal ennreal topological_space big_operators universes u v variables {ι : Type u} {E : Type v} [fintype ι] [normed_add_comm_group E] [normed_space ℝ E] open measure_theory metric set finset filter box_integral namespace box_integral /-- The indicator function of a measurable set is McShane integrable with respect to any locally-finite measure. -/ lemma has_integral_indicator_const (l : integration_params) (hl : l.bRiemann = ff) {s : set (ι → ℝ)} (hs : measurable_set s) (I : box ι) (y : E) (μ : measure (ι → ℝ)) [is_locally_finite_measure μ] : has_integral.{u v v} I l (s.indicator (λ _, y)) μ.to_box_additive.to_smul ((μ (s ∩ I)).to_real • y) := begin refine has_integral_of_mul (∥y∥) (λ ε ε0, _), lift ε to ℝ≥0 using ε0.le, rw nnreal.coe_pos at ε0, /- First we choose a closed set `F ⊆ s ∩ I.Icc` and an open set `U ⊇ s` such that both `(s ∩ I.Icc) \ F` and `U \ s` have measuer less than `ε`. -/ have A : μ (s ∩ I.Icc) ≠ ∞, from ((measure_mono $ set.inter_subset_right _ _).trans_lt (I.measure_Icc_lt_top μ)).ne, have B : μ (s ∩ I) ≠ ∞, from ((measure_mono $ set.inter_subset_right _ _).trans_lt (I.measure_coe_lt_top μ)).ne, obtain ⟨F, hFs, hFc, hμF⟩ : ∃ F ⊆ s ∩ I.Icc, is_closed F ∧ μ ((s ∩ I.Icc) \ F) < ε, from (hs.inter I.measurable_set_Icc).exists_is_closed_diff_lt A (ennreal.coe_pos.2 ε0).ne', obtain ⟨U, hsU, hUo, hUt, hμU⟩ : ∃ U ⊇ s ∩ I.Icc, is_open U ∧ μ U < ∞ ∧ μ (U \ (s ∩ I.Icc)) < ε, from (hs.inter I.measurable_set_Icc).exists_is_open_diff_lt A (ennreal.coe_pos.2 ε0).ne', /- Then we choose `r` so that `closed_ball x (r x) ⊆ U` whenever `x ∈ s ∩ I.Icc` and `closed_ball x (r x)` is disjoint with `F` otherwise. -/ have : ∀ x ∈ s ∩ I.Icc, ∃ r : Ioi (0 : ℝ), closed_ball x r ⊆ U, from λ x hx, subtype.exists'.1 (nhds_basis_closed_ball.mem_iff.1 (hUo.mem_nhds $ hsU hx)), choose! rs hrsU, have : ∀ x ∈ I.Icc \ s, ∃ r : Ioi (0 : ℝ), closed_ball x r ⊆ Fᶜ, from λ x hx, subtype.exists'.1 (nhds_basis_closed_ball.mem_iff.1 (hFc.is_open_compl.mem_nhds $ λ hx', hx.2 (hFs hx').1)), choose! rs' hrs'F, set r : (ι → ℝ) → Ioi (0 : ℝ) := s.piecewise rs rs', refine ⟨λ c, r, λ c, l.r_cond_of_bRiemann_eq_ff hl, λ c π hπ hπp, _⟩, rw mul_comm, /- Then the union of boxes `J ∈ π` such that `π.tag ∈ s` includes `F` and is included by `U`, hence its measure is `ε`-close to the measure of `s`. -/ dsimp [integral_sum], simp only [mem_closed_ball, dist_eq_norm, ← indicator_const_smul_apply, sum_indicator_eq_sum_filter, ← sum_smul, ← sub_smul, norm_smul, real.norm_eq_abs, ← prepartition.filter_boxes, ← prepartition.measure_Union_to_real], refine mul_le_mul_of_nonneg_right _ (norm_nonneg y), set t := (π.to_prepartition.filter (λ J, π.tag J ∈ s)).Union, change abs ((μ t).to_real - (μ (s ∩ I)).to_real) ≤ ε, have htU : t ⊆ U ∩ I, { simp only [t, prepartition.Union_def, Union_subset_iff, prepartition.mem_filter, and_imp], refine λ J hJ hJs x hx, ⟨hrsU _ ⟨hJs, π.tag_mem_Icc J⟩ _, π.le_of_mem' J hJ hx⟩, simpa only [r, s.piecewise_eq_of_mem _ _ hJs] using hπ.1 J hJ (box.coe_subset_Icc hx) }, refine abs_sub_le_iff.2 ⟨_, _⟩, { refine (ennreal.le_to_real_sub B).trans (ennreal.to_real_le_coe_of_le_coe _), refine (tsub_le_tsub (measure_mono htU) le_rfl).trans (le_measure_diff.trans _), refine (measure_mono $ λ x hx, _).trans hμU.le, exact ⟨hx.1.1, λ hx', hx.2 ⟨hx'.1, hx.1.2⟩⟩ }, { have hμt : μ t ≠ ∞ := ((measure_mono (htU.trans (inter_subset_left _ _))).trans_lt hUt).ne, refine (ennreal.le_to_real_sub hμt).trans (ennreal.to_real_le_coe_of_le_coe _), refine le_measure_diff.trans ((measure_mono _).trans hμF.le), rintro x ⟨⟨hxs, hxI⟩, hxt⟩, refine ⟨⟨hxs, box.coe_subset_Icc hxI⟩, λ hxF, hxt _⟩, simp only [t, prepartition.Union_def, prepartition.mem_filter, set.mem_Union, exists_prop], rcases hπp x hxI with ⟨J, hJπ, hxJ⟩, refine ⟨J, ⟨hJπ, _⟩, hxJ⟩, contrapose hxF, refine hrs'F _ ⟨π.tag_mem_Icc J, hxF⟩ _, simpa only [r, s.piecewise_eq_of_not_mem _ _ hxF] using hπ.1 J hJπ (box.coe_subset_Icc hxJ) } end /-- If `f` is a.e. equal to zero on a rectangular box, then it has McShane integral zero on this box. -/ lemma has_integral_zero_of_ae_eq_zero {l : integration_params} {I : box ι} {f : (ι → ℝ) → E} {μ : measure (ι → ℝ)} [is_locally_finite_measure μ] (hf : f =ᵐ[μ.restrict I] 0) (hl : l.bRiemann = ff) : has_integral.{u v v} I l f μ.to_box_additive.to_smul 0 := begin /- Each set `{x | n < ∥f x∥ ≤ n + 1}`, `n : ℕ`, has measure zero. We cover it by an open set of measure less than `ε / 2 ^ n / (n + 1)`. Then the norm of the integral sum is less than `ε`. -/ refine has_integral_iff.2 (λ ε ε0, _), lift ε to ℝ≥0 using ε0.lt.le, rw [gt_iff_lt, nnreal.coe_pos] at ε0, rcases nnreal.exists_pos_sum_of_encodable ε0.ne' ℕ with ⟨δ, δ0, c, hδc, hcε⟩, haveI := fact.mk (I.measure_coe_lt_top μ), change μ.restrict I {x | f x ≠ 0} = 0 at hf, set N : (ι → ℝ) → ℕ := λ x, ⌈∥f x∥⌉₊, have N0 : ∀ {x}, N x = 0 ↔ f x = 0, by { intro x, simp [N] }, have : ∀ n, ∃ U ⊇ N ⁻¹' {n}, is_open U ∧ μ.restrict I U < δ n / n, { refine λ n, (N ⁻¹' {n}).exists_is_open_lt_of_lt _ _, cases n, { simpa [ennreal.div_zero (ennreal.coe_pos.2 (δ0 _)).ne'] using measure_lt_top (μ.restrict I) _ }, { refine (measure_mono_null _ hf).le.trans_lt _, { exact λ x hxN hxf, n.succ_ne_zero ((eq.symm hxN).trans $ N0.2 hxf) }, { simp [(δ0 _).ne'] } } }, choose U hNU hUo hμU, have : ∀ x, ∃ r : Ioi (0 : ℝ), closed_ball x r ⊆ U (N x), from λ x, subtype.exists'.1 (nhds_basis_closed_ball.mem_iff.1 ((hUo _).mem_nhds (hNU _ rfl))), choose r hrU, refine ⟨λ _, r, λ c, l.r_cond_of_bRiemann_eq_ff hl, λ c π hπ hπp, _⟩, rw [dist_eq_norm, sub_zero, ← integral_sum_fiberwise (λ J, N (π.tag J))], refine le_trans _ (nnreal.coe_lt_coe.2 hcε).le, refine (norm_sum_le_of_le _ _).trans (sum_le_has_sum _ (λ n _, (δ n).2) (nnreal.has_sum_coe.2 hδc)), rintro n -, dsimp [integral_sum], have : ∀ J ∈ π.filter (λ J, N (π.tag J) = n), ∥(μ ↑J).to_real • f (π.tag J)∥ ≤ (μ J).to_real * n, { intros J hJ, rw tagged_prepartition.mem_filter at hJ, rw [norm_smul, real.norm_eq_abs, abs_of_nonneg ennreal.to_real_nonneg], exact mul_le_mul_of_nonneg_left (hJ.2 ▸ nat.le_ceil _) ennreal.to_real_nonneg }, refine (norm_sum_le_of_le _ this).trans _, clear this, rw [← sum_mul, ← prepartition.measure_Union_to_real], generalize hm : μ (π.filter (λ J, N (π.tag J) = n)).Union = m, have : m < δ n / n, { simp only [measure.restrict_apply (hUo _).measurable_set] at hμU, refine hm ▸ (measure_mono _).trans_lt (hμU _), simp only [set.subset_def, tagged_prepartition.mem_Union, exists_prop, tagged_prepartition.mem_filter], rintro x ⟨J, ⟨hJ, rfl⟩, hx⟩, exact ⟨hrU _ (hπ.1 _ hJ (box.coe_subset_Icc hx)), π.le_of_mem' J hJ hx⟩ }, lift m to ℝ≥0 using ne_top_of_lt this, rw [ennreal.coe_to_real, ← nnreal.coe_nat_cast, ← nnreal.coe_mul, nnreal.coe_le_coe, ← ennreal.coe_le_coe, ennreal.coe_mul, ennreal.coe_nat, mul_comm], exact (mul_le_mul_left' this.le _).trans ennreal.mul_div_le end /-- If `f` has integral `y` on a box `I` with respect to a locally finite measure `μ` and `g` is a.e. equal to `f` on `I`, then `g` has the same integral on `I`. -/ lemma has_integral.congr_ae {l : integration_params} {I : box ι} {y : E} {f g : (ι → ℝ) → E} {μ : measure (ι → ℝ)} [is_locally_finite_measure μ] (hf : has_integral.{u v v} I l f μ.to_box_additive.to_smul y) (hfg : f =ᵐ[μ.restrict I] g) (hl : l.bRiemann = ff) : has_integral.{u v v} I l g μ.to_box_additive.to_smul y := begin have : (g - f) =ᵐ[μ.restrict I] 0, from hfg.mono (λ x hx, sub_eq_zero.2 hx.symm), simpa using hf.add (has_integral_zero_of_ae_eq_zero this hl) end end box_integral namespace measure_theory namespace simple_func /-- A simple function is McShane integrable w.r.t. any locally finite measure. -/ lemma has_box_integral (f : simple_func (ι → ℝ) E) (μ : measure (ι → ℝ)) [is_locally_finite_measure μ] (I : box ι) (l : integration_params) (hl : l.bRiemann = ff) : has_integral.{u v v} I l f μ.to_box_additive.to_smul (f.integral (μ.restrict I)) := begin induction f using measure_theory.simple_func.induction with y s hs f g hd hfi hgi, { simpa [function.const, measure.restrict_apply hs] using box_integral.has_integral_indicator_const l hl hs I y μ }, { borelize E, haveI := fact.mk (I.measure_coe_lt_top μ), rw integral_add, exacts [hfi.add hgi, integrable_iff.2 $ λ _ _, measure_lt_top _ _, integrable_iff.2 $ λ _ _, measure_lt_top _ _] } end /-- For a simple function, its McShane (or Henstock, or `⊥`) box integral is equal to its integral in the sense of `measure_theory.simple_func.integral`. -/ lemma box_integral_eq_integral (f : simple_func (ι → ℝ) E) (μ : measure (ι → ℝ)) [is_locally_finite_measure μ] (I : box ι) (l : integration_params) (hl : l.bRiemann = ff) : box_integral.integral.{u v v} I l f μ.to_box_additive.to_smul = f.integral (μ.restrict I) := (f.has_box_integral μ I l hl).integral_eq end simple_func open topological_space /-- If `f : ℝⁿ → E` is Bochner integrable w.r.t. a locally finite measure `μ` on a rectangular box `I`, then it is McShane integrable on `I` with the same integral. -/ lemma integrable_on.has_box_integral [complete_space E] {f : (ι → ℝ) → E} {μ : measure (ι → ℝ)} [is_locally_finite_measure μ] {I : box ι} (hf : integrable_on f I μ) (l : integration_params) (hl : l.bRiemann = ff) : has_integral.{u v v} I l f μ.to_box_additive.to_smul (∫ x in I, f x ∂ μ) := begin borelize E, /- First we replace an `ae_strongly_measurable` function by a measurable one. -/ rcases hf.ae_strongly_measurable with ⟨g, hg, hfg⟩, haveI : separable_space (range g ∪ {0} : set E) := hg.separable_space_range_union_singleton, rw integral_congr_ae hfg, have hgi : integrable_on g I μ := (integrable_congr hfg).1 hf, refine box_integral.has_integral.congr_ae _ hfg.symm hl, clear_dependent f, /- Now consider the sequence of simple functions `simple_func.approx_on g hg.measurable (range g ∪ {0}) 0 (by simp)` approximating `g`. Recall some properties of this sequence. -/ set f : ℕ → simple_func (ι → ℝ) E := simple_func.approx_on g hg.measurable (range g ∪ {0}) 0 (by simp), have hfi : ∀ n, integrable_on (f n) I μ, from simple_func.integrable_approx_on_range hg.measurable hgi, have hfi' := λ n, ((f n).has_box_integral μ I l hl).integrable, have hfgi : tendsto (λ n, (f n).integral (μ.restrict I)) at_top (𝓝 $ ∫ x in I, g x ∂μ), from tendsto_integral_approx_on_of_measurable_of_range_subset hg.measurable hgi _ subset.rfl, have hfg_mono : ∀ x {m n}, m ≤ n → ∥f n x - g x∥ ≤ ∥f m x - g x∥, { intros x m n hmn, rw [← dist_eq_norm, ← dist_eq_norm, dist_nndist, dist_nndist, nnreal.coe_le_coe, ← ennreal.coe_le_coe, ← edist_nndist, ← edist_nndist], exact simple_func.edist_approx_on_mono hg.measurable _ x hmn }, /- Now consider `ε > 0`. We need to find `r` such that for any tagged partition subordinate to `r`, the integral sum is `(μ I + 1 + 1) * ε`-close to the Bochner integral. -/ refine has_integral_of_mul ((μ I).to_real + 1 + 1) (λ ε ε0, _), lift ε to ℝ≥0 using ε0.le, rw nnreal.coe_pos at ε0, have ε0' := ennreal.coe_pos.2 ε0, /- Choose `N` such that the integral of `∥f N x - g x∥` is less than or equal to `ε`. -/ obtain ⟨N₀, hN₀⟩ : ∃ N : ℕ, ∫ x in I, ∥f N x - g x∥ ∂μ ≤ ε, { have : tendsto (λ n, ∫⁻ x in I, ∥f n x - g x∥₊ ∂μ) at_top (𝓝 0), from simple_func.tendsto_approx_on_range_L1_nnnorm hg.measurable hgi, refine (this.eventually (ge_mem_nhds ε0')).exists.imp (λ N hN, _), exact integral_coe_le_of_lintegral_coe_le hN }, /- For each `x`, we choose `Nx x ≥ N₀` such that `dist (f Nx x) (g x) ≤ ε`. -/ have : ∀ x, ∃ N₁, N₀ ≤ N₁ ∧ dist (f N₁ x) (g x) ≤ ε, { intro x, have : tendsto (λ n, f n x) at_top (𝓝 $ g x), from simple_func.tendsto_approx_on hg.measurable _ (subset_closure (by simp)), exact ((eventually_ge_at_top N₀).and $ this $ closed_ball_mem_nhds _ ε0).exists }, choose Nx hNx hNxε, /- We also choose a convergent series with `∑' i : ℕ, δ i < ε`. -/ rcases nnreal.exists_pos_sum_of_encodable ε0.ne' ℕ with ⟨δ, δ0, c, hδc, hcε⟩, /- Since each simple function `fᵢ` is integrable, there exists `rᵢ : ℝⁿ → (0, ∞)` such that the integral sum of `f` over any tagged prepartition is `δᵢ`-close to the sum of integrals of `fᵢ` over the boxes of this prepartition. For each `x`, we choose `r (Nx x)` as the radius at `x`. -/ set r : ℝ≥0 → (ι → ℝ) → Ioi (0 : ℝ) := λ c x, (hfi' $ Nx x).convergence_r (δ $ Nx x) c x, refine ⟨r, λ c, l.r_cond_of_bRiemann_eq_ff hl, λ c π hπ hπp, _⟩, /- Now we prove the estimate in 3 "jumps": first we replace `g x` in the formula for the integral sum by `f (Nx x)`; then we replace each `μ J • f (Nx (π.tag J)) (π.tag J)` by the Bochner integral of `f (Nx (π.tag J)) x` over `J`, then we jump to the Bochner integral of `g`. -/ refine (dist_triangle4 _ (∑ J in π.boxes, (μ J).to_real • f (Nx $ π.tag J) (π.tag J)) (∑ J in π.boxes, ∫ x in J, f (Nx $ π.tag J) x ∂μ) _).trans _, rw [add_mul, add_mul, one_mul], refine add_le_add_three _ _ _, { /- Since each `f (Nx $ π.tag J)` is `ε`-close to `g (π.tag J)`, replacing the latter with the former in the formula for the integral sum changes the sum at most by `μ I * ε`. -/ rw [← hπp.Union_eq, π.to_prepartition.measure_Union_to_real, sum_mul, integral_sum], refine dist_sum_sum_le_of_le _ (λ J hJ, _), dsimp, rw [dist_eq_norm, ← smul_sub, norm_smul, real.norm_eq_abs, abs_of_nonneg ennreal.to_real_nonneg], refine mul_le_mul_of_nonneg_left _ ennreal.to_real_nonneg, rw [← dist_eq_norm'], exact hNxε _ }, { /- We group the terms of both sums by the values of `Nx (π.tag J)`. For each `N`, the sum of Bochner integrals over the boxes is equal to the sum of box integrals, and the sum of box integrals is `δᵢ`-close to the corresponding integral sum due to the Henstock-Sacks inequality. -/ rw [← π.to_prepartition.sum_fiberwise (λ J, Nx (π.tag J)), ← π.to_prepartition.sum_fiberwise (λ J, Nx (π.tag J))], refine le_trans _ (nnreal.coe_lt_coe.2 hcε).le, refine (dist_sum_sum_le_of_le _ (λ n hn, _)).trans (sum_le_has_sum _ (λ n _, (δ n).2) (nnreal.has_sum_coe.2 hδc)), have hNxn : ∀ J ∈ π.filter (λ J, Nx (π.tag J) = n), Nx (π.tag J) = n, from λ J hJ, (π.mem_filter.1 hJ).2, have hrn : ∀ J ∈ π.filter (λ J, Nx (π.tag J) = n), r c (π.tag J) = (hfi' n).convergence_r (δ n) c (π.tag J), { intros J hJ, obtain rfl := hNxn J hJ, refl }, have : l.mem_base_set I c ((hfi' n).convergence_r (δ n) c) (π.filter (λ J, Nx (π.tag J) = n)), from (hπ.filter _).mono' _ le_rfl le_rfl (λ J hJ, (hrn J hJ).le), convert (hfi' n).dist_integral_sum_sum_integral_le_of_mem_base_set (δ0 _) this using 2, { refine sum_congr rfl (λ J hJ, _), simp [hNxn J hJ] }, { refine sum_congr rfl (λ J hJ, _), rw [← simple_func.integral_eq_integral, simple_func.box_integral_eq_integral _ _ _ _ hl, hNxn J hJ], exact (hfi _).mono_set (prepartition.le_of_mem _ hJ) } }, { /- For the last jump, we use the fact that the distance between `f (Nx x) x` and `g x` is less than or equal to the distance between `f N₀ x` and `g x` and the integral of `∥f N₀ x - g x∥` is less than or equal to `ε`. -/ refine le_trans _ hN₀, have hfi : ∀ n (J ∈ π), integrable_on (f n) ↑J μ, from λ n J hJ, (hfi n).mono_set (π.le_of_mem' J hJ), have hgi : ∀ J ∈ π, integrable_on g ↑J μ, from λ J hJ, hgi.mono_set (π.le_of_mem' J hJ), have hfgi : ∀ n (J ∈ π), integrable_on (λ x, ∥f n x - g x∥) J μ, from λ n J hJ, ((hfi n J hJ).sub (hgi J hJ)).norm, rw [← hπp.Union_eq, prepartition.Union_def', integral_finset_bUnion π.boxes (λ J hJ, J.measurable_set_coe) π.pairwise_disjoint hgi, integral_finset_bUnion π.boxes (λ J hJ, J.measurable_set_coe) π.pairwise_disjoint (hfgi _)], refine dist_sum_sum_le_of_le _ (λ J hJ, _), rw [dist_eq_norm, ← integral_sub (hfi _ J hJ) (hgi J hJ)], refine norm_integral_le_of_norm_le (hfgi _ J hJ) (eventually_of_forall $ λ x, _), exact hfg_mono x (hNx (π.tag J)) } end end measure_theory