/- Copyright (c) 2021 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import analysis.calculus.inverse import linear_algebra.dual /-! # Lagrange multipliers In this file we formalize the [Lagrange multipliers](https://en.wikipedia.org/wiki/Lagrange_multiplier) method of solving conditional extremum problems: if a function `φ` has a local extremum at `x₀` on the set `f ⁻¹' {f x₀}`, `f x = (f₀ x, ..., fₙ₋₁ x)`, then the differentials of `fₖ` and `φ` are linearly dependent. First we formulate a geometric version of this theorem which does not rely on the target space being `ℝⁿ`, then restate it in terms of coordinates. ## TODO Formalize Karush-Kuhn-Tucker theorem ## Tags lagrange multiplier, local extremum -/ open filter set open_locale topological_space filter big_operators variables {E F : Type*} [normed_add_comm_group E] [normed_space ℝ E] [complete_space E] [normed_add_comm_group F] [normed_space ℝ F] [complete_space F] {f : E → F} {φ : E → ℝ} {x₀ : E} {f' : E →L[ℝ] F} {φ' : E →L[ℝ] ℝ} /-- Lagrange multipliers theorem: if `φ : E → ℝ` has a local extremum on the set `{x | f x = f x₀}` at `x₀`, both `f : E → F` and `φ` are strictly differentiable at `x₀`, and the codomain of `f` is a complete space, then the linear map `x ↦ (f' x, φ' x)` is not surjective. -/ lemma is_local_extr_on.range_ne_top_of_has_strict_fderiv_at (hextr : is_local_extr_on φ {x | f x = f x₀} x₀) (hf' : has_strict_fderiv_at f f' x₀) (hφ' : has_strict_fderiv_at φ φ' x₀) : (f'.prod φ').range ≠ ⊤ := begin intro htop, set fφ := λ x, (f x, φ x), have A : map φ (𝓝[f ⁻¹' {f x₀}] x₀) = 𝓝 (φ x₀), { change map (prod.snd ∘ fφ) (𝓝[fφ ⁻¹' {p | p.1 = f x₀}] x₀) = 𝓝 (φ x₀), rw [← map_map, nhds_within, map_inf_principal_preimage, (hf'.prod hφ').map_nhds_eq_of_surj htop], exact map_snd_nhds_within _ }, exact hextr.not_nhds_le_map A.ge end /-- Lagrange multipliers theorem: if `φ : E → ℝ` has a local extremum on the set `{x | f x = f x₀}` at `x₀`, both `f : E → F` and `φ` are strictly differentiable at `x₀`, and the codomain of `f` is a complete space, then there exist `Λ : dual ℝ F` and `Λ₀ : ℝ` such that `(Λ, Λ₀) ≠ 0` and `Λ (f' x) + Λ₀ • φ' x = 0` for all `x`. -/ lemma is_local_extr_on.exists_linear_map_of_has_strict_fderiv_at (hextr : is_local_extr_on φ {x | f x = f x₀} x₀) (hf' : has_strict_fderiv_at f f' x₀) (hφ' : has_strict_fderiv_at φ φ' x₀) : ∃ (Λ : module.dual ℝ F) (Λ₀ : ℝ), (Λ, Λ₀) ≠ 0 ∧ ∀ x, Λ (f' x) + Λ₀ • φ' x = 0 := begin rcases submodule.exists_le_ker_of_lt_top _ (lt_top_iff_ne_top.2 $ hextr.range_ne_top_of_has_strict_fderiv_at hf' hφ') with ⟨Λ', h0, hΛ'⟩, set e : ((F →ₗ[ℝ] ℝ) × ℝ) ≃ₗ[ℝ] (F × ℝ →ₗ[ℝ] ℝ) := ((linear_equiv.refl ℝ (F →ₗ[ℝ] ℝ)).prod (linear_map.ring_lmap_equiv_self ℝ ℝ ℝ).symm).trans (linear_map.coprod_equiv ℝ), rcases e.surjective Λ' with ⟨⟨Λ, Λ₀⟩, rfl⟩, refine ⟨Λ, Λ₀, e.map_ne_zero_iff.1 h0, λ x, _⟩, convert linear_map.congr_fun (linear_map.range_le_ker_iff.1 hΛ') x using 1, -- squeezed `simp [mul_comm]` to speed up elaboration simp only [linear_map.coprod_equiv_apply, linear_equiv.refl_apply, linear_map.ring_lmap_equiv_self_symm_apply, linear_map.comp_apply, continuous_linear_map.coe_coe, continuous_linear_map.prod_apply, linear_equiv.trans_apply, linear_equiv.prod_apply, linear_map.coprod_apply, linear_map.smul_right_apply, linear_map.one_apply, smul_eq_mul, mul_comm] end /-- Lagrange multipliers theorem: if `φ : E → ℝ` has a local extremum on the set `{x | f x = f x₀}` at `x₀`, and both `f : E → ℝ` and `φ` are strictly differentiable at `x₀`, then there exist `a b : ℝ` such that `(a, b) ≠ 0` and `a • f' + b • φ' = 0`. -/ lemma is_local_extr_on.exists_multipliers_of_has_strict_fderiv_at_1d {f : E → ℝ} {f' : E →L[ℝ] ℝ} (hextr : is_local_extr_on φ {x | f x = f x₀} x₀) (hf' : has_strict_fderiv_at f f' x₀) (hφ' : has_strict_fderiv_at φ φ' x₀) : ∃ (a b : ℝ), (a, b) ≠ 0 ∧ a • f' + b • φ' = 0 := begin obtain ⟨Λ, Λ₀, hΛ, hfΛ⟩ := hextr.exists_linear_map_of_has_strict_fderiv_at hf' hφ', refine ⟨Λ 1, Λ₀, _, _⟩, { contrapose! hΛ, simp only [prod.mk_eq_zero] at ⊢ hΛ, refine ⟨linear_map.ext (λ x, _), hΛ.2⟩, simpa [hΛ.1] using Λ.map_smul x 1 }, { ext x, have H₁ : Λ (f' x) = f' x * Λ 1, { simpa only [mul_one, algebra.id.smul_eq_mul] using Λ.map_smul (f' x) 1 }, have H₂ : f' x * Λ 1 + Λ₀ * φ' x = 0, { simpa only [algebra.id.smul_eq_mul, H₁] using hfΛ x }, simpa [mul_comm] using H₂ } end /-- Lagrange multipliers theorem, 1d version. Let `f : ι → E → ℝ` be a finite family of functions. Suppose that `φ : E → ℝ` has a local extremum on the set `{x | ∀ i, f i x = f i x₀}` at `x₀`. Suppose that all functions `f i` as well as `φ` are strictly differentiable at `x₀`. Then the derivatives `f' i : E → L[ℝ] ℝ` and `φ' : E →L[ℝ] ℝ` are linearly dependent: there exist `Λ : ι → ℝ` and `Λ₀ : ℝ`, `(Λ, Λ₀) ≠ 0`, such that `∑ i, Λ i • f' i + Λ₀ • φ' = 0`. See also `is_local_extr_on.linear_dependent_of_has_strict_fderiv_at` for a version that states `¬linear_independent ℝ _` instead of existence of `Λ` and `Λ₀`. -/ lemma is_local_extr_on.exists_multipliers_of_has_strict_fderiv_at {ι : Type*} [fintype ι] {f : ι → E → ℝ} {f' : ι → E →L[ℝ] ℝ} (hextr : is_local_extr_on φ {x | ∀ i, f i x = f i x₀} x₀) (hf' : ∀ i, has_strict_fderiv_at (f i) (f' i) x₀) (hφ' : has_strict_fderiv_at φ φ' x₀) : ∃ (Λ : ι → ℝ) (Λ₀ : ℝ), (Λ, Λ₀) ≠ 0 ∧ ∑ i, Λ i • f' i + Λ₀ • φ' = 0 := begin letI := classical.dec_eq ι, replace hextr : is_local_extr_on φ {x | (λ i, f i x) = (λ i, f i x₀)} x₀, by simpa only [function.funext_iff] using hextr, rcases hextr.exists_linear_map_of_has_strict_fderiv_at (has_strict_fderiv_at_pi.2 (λ i, hf' i)) hφ' with ⟨Λ, Λ₀, h0, hsum⟩, rcases (linear_equiv.pi_ring ℝ ℝ ι ℝ).symm.surjective Λ with ⟨Λ, rfl⟩, refine ⟨Λ, Λ₀, _, _⟩, { simpa only [ne.def, prod.ext_iff, linear_equiv.map_eq_zero_iff, prod.fst_zero] using h0 }, { ext x, simpa [mul_comm] using hsum x } end /-- Lagrange multipliers theorem. Let `f : ι → E → ℝ` be a finite family of functions. Suppose that `φ : E → ℝ` has a local extremum on the set `{x | ∀ i, f i x = f i x₀}` at `x₀`. Suppose that all functions `f i` as well as `φ` are strictly differentiable at `x₀`. Then the derivatives `f' i : E → L[ℝ] ℝ` and `φ' : E →L[ℝ] ℝ` are linearly dependent. See also `is_local_extr_on.exists_multipliers_of_has_strict_fderiv_at` for a version that that states existence of Lagrange multipliers `Λ` and `Λ₀` instead of using `¬linear_independent ℝ _` -/ lemma is_local_extr_on.linear_dependent_of_has_strict_fderiv_at {ι : Type*} [fintype ι] {f : ι → E → ℝ} {f' : ι → E →L[ℝ] ℝ} (hextr : is_local_extr_on φ {x | ∀ i, f i x = f i x₀} x₀) (hf' : ∀ i, has_strict_fderiv_at (f i) (f' i) x₀) (hφ' : has_strict_fderiv_at φ φ' x₀) : ¬linear_independent ℝ (option.elim φ' f' : option ι → E →L[ℝ] ℝ) := begin rw [fintype.linear_independent_iff], push_neg, rcases hextr.exists_multipliers_of_has_strict_fderiv_at hf' hφ' with ⟨Λ, Λ₀, hΛ, hΛf⟩, refine ⟨option.elim Λ₀ Λ, _, _⟩, { simpa [add_comm] using hΛf }, { simpa [function.funext_iff, not_and_distrib, or_comm, option.exists] using hΛ } end