/- Copyright (c) 2021 Yury Kudriashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudriashov, Malo JaffrΓ© -/ import analysis.convex.function /-! # Slopes of convex functions This file relates convexity/concavity of functions in a linearly ordered field and the monotonicity of their slopes. The main use is to show convexity/concavity from monotonicity of the derivative. -/ variables {π•œ : Type*} [linear_ordered_field π•œ] {s : set π•œ} {f : π•œ β†’ π•œ} /-- If `f : π•œ β†’ π•œ` is convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ lemma convex_on.slope_mono_adjacent (hf : convex_on π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := begin have hxz := hxy.trans hyz, rw ←sub_pos at hxy hxz hyz, suffices : f y / (y - x) + f y / (z - y) ≀ f x / (y - x) + f z / (z - y), { ring_nf at this ⊒, linarith }, set a := (z - y) / (z - x), set b := (y - x) / (z - x), have hy : a β€’ x + b β€’ z = y, by { field_simp, rw div_eq_iff; [ring, linarith] }, have key, from hf.2 hx hz (show 0 ≀ a, by apply div_nonneg; linarith) (show 0 ≀ b, by apply div_nonneg; linarith) (show a + b = 1, by { field_simp, rw div_eq_iff; [ring, linarith] }), rw hy at key, replace key := mul_le_mul_of_nonneg_left key hxz.le, field_simp [hxy.ne', hyz.ne', hxz.ne', mul_comm (z - x) _] at key ⊒, rw div_le_div_right, { linarith }, { nlinarith } end /-- If `f : π•œ β†’ π•œ` is concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ lemma concave_on.slope_anti_adjacent (hf : concave_on π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := begin rw [←neg_le_neg_iff, ←neg_sub_neg (f x), ←neg_sub_neg (f y)], simp_rw [←pi.neg_apply, ←neg_div, neg_sub], exact convex_on.slope_mono_adjacent hf.neg hx hz hxy hyz, end /-- If `f : π•œ β†’ π•œ` is strictly convex, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ lemma strict_convex_on.slope_strict_mono_adjacent (hf : strict_convex_on π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f y - f x) / (y - x) < (f z - f y) / (z - y) := begin have hxz := hxy.trans hyz, have hxz' := hxz.ne, rw ←sub_pos at hxy hxz hyz, suffices : f y / (y - x) + f y / (z - y) < f x / (y - x) + f z / (z - y), { ring_nf at this ⊒, linarith }, set a := (z - y) / (z - x), set b := (y - x) / (z - x), have hy : a β€’ x + b β€’ z = y, by { field_simp, rw div_eq_iff; [ring, linarith] }, have key, from hf.2 hx hz hxz' (div_pos hyz hxz) (div_pos hxy hxz) (show a + b = 1, by { field_simp, rw div_eq_iff; [ring, linarith] }), rw hy at key, replace key := mul_lt_mul_of_pos_left key hxz, field_simp [hxy.ne', hyz.ne', hxz.ne', mul_comm (z - x) _] at key ⊒, rw div_lt_div_right, { linarith }, { nlinarith } end /-- If `f : π•œ β†’ π•œ` is strictly concave, then for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly greater than the slope of the secant line of `f` on `[x, z]`. -/ lemma strict_concave_on.slope_anti_adjacent (hf : strict_concave_on π•œ s f) {x y z : π•œ} (hx : x ∈ s) (hz : z ∈ s) (hxy : x < y) (hyz : y < z) : (f z - f y) / (z - y) < (f y - f x) / (y - x) := begin rw [←neg_lt_neg_iff, ←neg_sub_neg (f x), ←neg_sub_neg (f y)], simp_rw [←pi.neg_apply, ←neg_div, neg_sub], exact strict_convex_on.slope_strict_mono_adjacent hf.neg hx hz hxy hyz, end /-- If for any three points `x < y < z`, the slope of the secant line of `f : π•œ β†’ π•œ` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`, then `f` is convex. -/ lemma convex_on_of_slope_mono_adjacent (hs : convex π•œ s) (hf : βˆ€ {x y z : π•œ}, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’ (f y - f x) / (y - x) ≀ (f z - f y) / (z - y)) : convex_on π•œ s f := linear_order.convex_on_of_lt hs begin assume x z hx hz hxz a b ha hb hab, let y := a * x + b * z, have hxy : x < y, { rw [← one_mul x, ← hab, add_mul], exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _ }, have hyz : y < z, { rw [← one_mul z, ← hab, add_mul], exact add_lt_add_right ((mul_lt_mul_left ha).2 hxz) _ }, have : (f y - f x) * (z - y) ≀ (f z - f y) * (y - x), from (div_le_div_iff (sub_pos.2 hxy) (sub_pos.2 hyz)).1 (hf hx hz hxy hyz), have hxz : 0 < z - x, from sub_pos.2 (hxy.trans hyz), have ha : (z - y) / (z - x) = a, { rw [eq_comm, ← sub_eq_iff_eq_add'] at hab, simp_rw [div_eq_iff hxz.ne', y, ←hab], ring }, have hb : (y - x) / (z - x) = b, { rw [eq_comm, ← sub_eq_iff_eq_add] at hab, simp_rw [div_eq_iff hxz.ne', y, ←hab], ring }, rwa [sub_mul, sub_mul, sub_le_iff_le_add', ← add_sub_assoc, le_sub_iff_add_le, ← mul_add, sub_add_sub_cancel, ← le_div_iff hxz, add_div, mul_div_assoc, mul_div_assoc, mul_comm (f x), mul_comm (f z), ha, hb] at this, end /-- If for any three points `x < y < z`, the slope of the secant line of `f : π•œ β†’ π•œ` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`, then `f` is concave. -/ lemma concave_on_of_slope_anti_adjacent (hs : convex π•œ s) (hf : βˆ€ {x y z : π•œ}, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’ (f z - f y) / (z - y) ≀ (f y - f x) / (y - x)) : concave_on π•œ s f := begin rw ←neg_convex_on_iff, refine convex_on_of_slope_mono_adjacent hs (Ξ» x y z hx hz hxy hyz, _), rw ←neg_le_neg_iff, simp_rw [←neg_div, neg_sub, pi.neg_apply, neg_sub_neg], exact hf hx hz hxy hyz, end /-- If for any three points `x < y < z`, the slope of the secant line of `f : π•œ β†’ π•œ` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`, then `f` is strictly convex. -/ lemma strict_convex_on_of_slope_strict_mono_adjacent (hs : convex π•œ s) (hf : βˆ€ {x y z : π•œ}, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’ (f y - f x) / (y - x) < (f z - f y) / (z - y)) : strict_convex_on π•œ s f := linear_order.strict_convex_on_of_lt hs begin assume x z hx hz hxz a b ha hb hab, let y := a * x + b * z, have hxy : x < y, { rw [← one_mul x, ← hab, add_mul], exact add_lt_add_left ((mul_lt_mul_left hb).2 hxz) _ }, have hyz : y < z, { rw [← one_mul z, ← hab, add_mul], exact add_lt_add_right ((mul_lt_mul_left ha).2 hxz) _ }, have : (f y - f x) * (z - y) < (f z - f y) * (y - x), from (div_lt_div_iff (sub_pos.2 hxy) (sub_pos.2 hyz)).1 (hf hx hz hxy hyz), have hxz : 0 < z - x, from sub_pos.2 (hxy.trans hyz), have ha : (z - y) / (z - x) = a, { rw [eq_comm, ← sub_eq_iff_eq_add'] at hab, simp_rw [div_eq_iff hxz.ne', y, ←hab], ring }, have hb : (y - x) / (z - x) = b, { rw [eq_comm, ← sub_eq_iff_eq_add] at hab, simp_rw [div_eq_iff hxz.ne', y, ←hab], ring }, rwa [sub_mul, sub_mul, sub_lt_iff_lt_add', ← add_sub_assoc, lt_sub_iff_add_lt, ← mul_add, sub_add_sub_cancel, ← lt_div_iff hxz, add_div, mul_div_assoc, mul_div_assoc, mul_comm (f x), mul_comm (f z), ha, hb] at this, end /-- If for any three points `x < y < z`, the slope of the secant line of `f : π•œ β†’ π•œ` on `[x, y]` is strictly greater than the slope of the secant line of `f` on `[x, z]`, then `f` is strictly concave. -/ lemma strict_concave_on_of_slope_strict_anti_adjacent (hs : convex π•œ s) (hf : βˆ€ {x y z : π•œ}, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’ (f z - f y) / (z - y) < (f y - f x) / (y - x)) : strict_concave_on π•œ s f := begin rw ←neg_strict_convex_on_iff, refine strict_convex_on_of_slope_strict_mono_adjacent hs (Ξ» x y z hx hz hxy hyz, _), rw ←neg_lt_neg_iff, simp_rw [←neg_div, neg_sub, pi.neg_apply, neg_sub_neg], exact hf hx hz hxy hyz, end /-- A function `f : π•œ β†’ π•œ` is convex iff for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is less than the slope of the secant line of `f` on `[x, z]`. -/ lemma convex_on_iff_slope_mono_adjacent : convex_on π•œ s f ↔ convex π•œ s ∧ βˆ€ ⦃x y z : π•œβ¦„, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’ (f y - f x) / (y - x) ≀ (f z - f y) / (z - y) := ⟨λ h, ⟨h.1, Ξ» x y z, h.slope_mono_adjacent⟩, Ξ» h, convex_on_of_slope_mono_adjacent h.1 h.2⟩ /-- A function `f : π•œ β†’ π•œ` is concave iff for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is greater than the slope of the secant line of `f` on `[x, z]`. -/ lemma concave_on_iff_slope_anti_adjacent : concave_on π•œ s f ↔ convex π•œ s ∧ βˆ€ ⦃x y z : π•œβ¦„, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’ (f z - f y) / (z - y) ≀ (f y - f x) / (y - x) := ⟨λ h, ⟨h.1, Ξ» x y z, h.slope_anti_adjacent⟩, Ξ» h, concave_on_of_slope_anti_adjacent h.1 h.2⟩ /-- A function `f : π•œ β†’ π•œ` is strictly convex iff for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly less than the slope of the secant line of `f` on `[x, z]`. -/ lemma strict_convex_on_iff_slope_strict_mono_adjacent : strict_convex_on π•œ s f ↔ convex π•œ s ∧ βˆ€ ⦃x y z : π•œβ¦„, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’ (f y - f x) / (y - x) < (f z - f y) / (z - y) := ⟨λ h, ⟨h.1, Ξ» x y z, h.slope_strict_mono_adjacent⟩, Ξ» h, strict_convex_on_of_slope_strict_mono_adjacent h.1 h.2⟩ /-- A function `f : π•œ β†’ π•œ` is strictly concave iff for any three points `x < y < z` the slope of the secant line of `f` on `[x, y]` is strictly greater than the slope of the secant line of `f` on `[x, z]`. -/ lemma strict_concave_on_iff_slope_strict_anti_adjacent : strict_concave_on π•œ s f ↔ convex π•œ s ∧ βˆ€ ⦃x y z : π•œβ¦„, x ∈ s β†’ z ∈ s β†’ x < y β†’ y < z β†’ (f z - f y) / (z - y) < (f y - f x) / (y - x) := ⟨λ h, ⟨h.1, Ξ» x y z, h.slope_anti_adjacent⟩, Ξ» h, strict_concave_on_of_slope_strict_anti_adjacent h.1 h.2⟩