/- Copyright (c) 2020 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Sébastien Gouëzel -/ import analysis.calculus.mean_value import analysis.special_functions.pow_deriv import analysis.special_functions.sqrt /-! # Collection of convex functions In this file we prove that the following functions are convex: * `strict_convex_on_exp` : The exponential function is strictly convex. * `even.convex_on_pow`, `even.strict_convex_on_pow` : For an even `n : ℕ`, `λ x, x ^ n` is convex and strictly convex when `2 ≤ n`. * `convex_on_pow`, `strict_convex_on_pow` : For `n : ℕ`, `λ x, x ^ n` is convex on $[0, +∞)$ and strictly convex when `2 ≤ n`. * `convex_on_zpow`, `strict_convex_on_zpow` : For `m : ℤ`, `λ x, x ^ m` is convex on $[0, +∞)$ and strictly convex when `m ≠ 0, 1`. * `convex_on_rpow`, `strict_convex_on_rpow` : For `p : ℝ`, `λ x, x ^ p` is convex on $[0, +∞)$ when `1 ≤ p` and strictly convex when `1 < p`. * `strict_concave_on_log_Ioi`, `strict_concave_on_log_Iio`: `real.log` is strictly concave on $(0, +∞)$ and $(-∞, 0)$ respectively. ## TODO For `p : ℝ`, prove that `λ x, x ^ p` is concave when `0 ≤ p ≤ 1` and strictly concave when `0 < p < 1`. -/ open real set open_locale big_operators /-- `exp` is strictly convex on the whole real line. -/ lemma strict_convex_on_exp : strict_convex_on ℝ univ exp := strict_convex_on_univ_of_deriv2_pos continuous_exp (λ x, (iter_deriv_exp 2).symm ▸ exp_pos x) /-- `exp` is convex on the whole real line. -/ lemma convex_on_exp : convex_on ℝ univ exp := strict_convex_on_exp.convex_on /-- `x^n`, `n : ℕ` is convex on the whole real line whenever `n` is even -/ lemma even.convex_on_pow {n : ℕ} (hn : even n) : convex_on ℝ set.univ (λ x : ℝ, x^n) := begin apply convex_on_univ_of_deriv2_nonneg (differentiable_pow n), { simp only [deriv_pow', differentiable.mul, differentiable_const, differentiable_pow] }, { intro x, obtain ⟨k, hk⟩ := (hn.tsub $ even_bit0 _).exists_two_nsmul _, rw [iter_deriv_pow, finset.prod_range_cast_nat_sub, hk, nsmul_eq_mul, pow_mul'], exact mul_nonneg (nat.cast_nonneg _) (pow_two_nonneg _) } end /-- `x^n`, `n : ℕ` is strictly convex on the whole real line whenever `n ≠ 0` is even. -/ lemma even.strict_convex_on_pow {n : ℕ} (hn : even n) (h : n ≠ 0) : strict_convex_on ℝ set.univ (λ x : ℝ, x^n) := begin apply strict_mono.strict_convex_on_univ_of_deriv (continuous_pow n), rw deriv_pow', replace h := nat.pos_of_ne_zero h, exact strict_mono.const_mul (odd.strict_mono_pow $ nat.even.sub_odd h hn $ nat.odd_iff.2 rfl) (nat.cast_pos.2 h), end /-- `x^n`, `n : ℕ` is convex on `[0, +∞)` for all `n` -/ lemma convex_on_pow (n : ℕ) : convex_on ℝ (Ici 0) (λ x : ℝ, x^n) := begin apply convex_on_of_deriv2_nonneg (convex_Ici _) (continuous_pow n).continuous_on (differentiable_on_pow n), { simp only [deriv_pow'], exact (@differentiable_on_pow ℝ _ _ _).const_mul (n : ℝ) }, { intros x hx, rw [iter_deriv_pow, finset.prod_range_cast_nat_sub], exact mul_nonneg (nat.cast_nonneg _) (pow_nonneg (interior_subset hx) _) } end /-- `x^n`, `n : ℕ` is strictly convex on `[0, +∞)` for all `n` greater than `2`. -/ lemma strict_convex_on_pow {n : ℕ} (hn : 2 ≤ n) : strict_convex_on ℝ (Ici 0) (λ x : ℝ, x^n) := begin apply strict_mono_on.strict_convex_on_of_deriv (convex_Ici _) (continuous_on_pow _), rw [deriv_pow', interior_Ici], exact λ x (hx : 0 < x) y hy hxy, mul_lt_mul_of_pos_left (pow_lt_pow_of_lt_left hxy hx.le $ nat.sub_pos_of_lt hn) (nat.cast_pos.2 $ zero_lt_two.trans_le hn), end lemma finset.prod_nonneg_of_card_nonpos_even {α β : Type*} [linear_ordered_comm_ring β] {f : α → β} [decidable_pred (λ x, f x ≤ 0)] {s : finset α} (h0 : even (s.filter (λ x, f x ≤ 0)).card) : 0 ≤ ∏ x in s, f x := calc 0 ≤ (∏ x in s, ((if f x ≤ 0 then (-1:β) else 1) * f x)) : finset.prod_nonneg (λ x _, by { split_ifs with hx hx, by simp [hx], simp at hx ⊢, exact le_of_lt hx }) ... = _ : by rw [finset.prod_mul_distrib, finset.prod_ite, finset.prod_const_one, mul_one, finset.prod_const, neg_one_pow_eq_pow_mod_two, nat.even_iff.1 h0, pow_zero, one_mul] lemma int_prod_range_nonneg (m : ℤ) (n : ℕ) (hn : even n) : 0 ≤ ∏ k in finset.range n, (m - k) := begin rcases hn with ⟨n, rfl⟩, induction n with n ihn, { simp }, rw ← two_mul at ihn, rw [← two_mul, nat.succ_eq_add_one, mul_add, mul_one, bit0, ← add_assoc, finset.prod_range_succ, finset.prod_range_succ, mul_assoc], refine mul_nonneg ihn _, generalize : (1 + 1) * n = k, cases le_or_lt m k with hmk hmk, { have : m ≤ k + 1, from hmk.trans (lt_add_one ↑k).le, exact mul_nonneg_of_nonpos_of_nonpos (sub_nonpos_of_le hmk) (sub_nonpos_of_le this) }, { exact mul_nonneg (sub_nonneg_of_le hmk.le) (sub_nonneg_of_le hmk) } end lemma int_prod_range_pos {m : ℤ} {n : ℕ} (hn : even n) (hm : m ∉ Ico (0 : ℤ) n) : 0 < ∏ k in finset.range n, (m - k) := begin refine (int_prod_range_nonneg m n hn).lt_of_ne (λ h, hm _), rw [eq_comm, finset.prod_eq_zero_iff] at h, obtain ⟨a, ha, h⟩ := h, rw sub_eq_zero.1 h, exact ⟨int.coe_zero_le _, int.coe_nat_lt.2 $ finset.mem_range.1 ha⟩, end /-- `x^m`, `m : ℤ` is convex on `(0, +∞)` for all `m` -/ lemma convex_on_zpow (m : ℤ) : convex_on ℝ (Ioi 0) (λ x : ℝ, x^m) := begin have : ∀ n : ℤ, differentiable_on ℝ (λ x, x ^ n) (Ioi (0 : ℝ)), from λ n, differentiable_on_zpow _ _ (or.inl $ lt_irrefl _), apply convex_on_of_deriv2_nonneg (convex_Ioi 0); try { simp only [interior_Ioi, deriv_zpow'] }, { exact (this _).continuous_on }, { exact this _ }, { exact (this _).const_mul _ }, { intros x hx, rw iter_deriv_zpow, refine mul_nonneg _ (zpow_nonneg (le_of_lt hx) _), exact_mod_cast int_prod_range_nonneg _ _ (even_bit0 1) } end /-- `x^m`, `m : ℤ` is convex on `(0, +∞)` for all `m` except `0` and `1`. -/ lemma strict_convex_on_zpow {m : ℤ} (hm₀ : m ≠ 0) (hm₁ : m ≠ 1) : strict_convex_on ℝ (Ioi 0) (λ x : ℝ, x^m) := begin apply strict_convex_on_of_deriv2_pos' (convex_Ioi 0), { exact (continuous_on_zpow₀ m).mono (λ x hx, ne_of_gt hx) }, intros x hx, rw iter_deriv_zpow, refine mul_pos _ (zpow_pos_of_pos hx _), exact_mod_cast int_prod_range_pos (even_bit0 1) (λ hm, _), norm_cast at hm, rw ← finset.coe_Ico at hm, fin_cases hm; cc, end lemma convex_on_rpow {p : ℝ} (hp : 1 ≤ p) : convex_on ℝ (Ici 0) (λ x : ℝ, x^p) := begin have A : deriv (λ (x : ℝ), x ^ p) = λ x, p * x^(p-1), by { ext x, simp [hp] }, apply convex_on_of_deriv2_nonneg (convex_Ici 0), { exact continuous_on_id.rpow_const (λ x _, or.inr (zero_le_one.trans hp)) }, { exact (differentiable_rpow_const hp).differentiable_on }, { rw A, assume x hx, replace hx : x ≠ 0, by { simp at hx, exact ne_of_gt hx }, simp [differentiable_at.differentiable_within_at, hx] }, { assume x hx, replace hx : 0 < x, by simpa using hx, suffices : 0 ≤ p * ((p - 1) * x ^ (p - 1 - 1)), by simpa [ne_of_gt hx, A], apply mul_nonneg (le_trans zero_le_one hp), exact mul_nonneg (sub_nonneg_of_le hp) (rpow_nonneg_of_nonneg hx.le _) } end lemma strict_convex_on_rpow {p : ℝ} (hp : 1 < p) : strict_convex_on ℝ (Ici 0) (λ x : ℝ, x^p) := begin have A : deriv (λ (x : ℝ), x ^ p) = λ x, p * x^(p-1), by { ext x, simp [hp.le] }, apply strict_convex_on_of_deriv2_pos (convex_Ici 0), { exact continuous_on_id.rpow_const (λ x _, or.inr (zero_le_one.trans hp.le)) }, rw interior_Ici, rintro x (hx : 0 < x), suffices : 0 < p * ((p - 1) * x ^ (p - 1 - 1)), by simpa [ne_of_gt hx, A], exact mul_pos (zero_lt_one.trans hp) (mul_pos (sub_pos_of_lt hp) (rpow_pos_of_pos hx _)), end lemma strict_concave_on_log_Ioi : strict_concave_on ℝ (Ioi 0) log := begin have h₁ : Ioi 0 ⊆ ({0} : set ℝ)ᶜ, { exact λ x (hx : 0 < x) (hx' : x = 0), hx.ne' hx' }, refine strict_concave_on_of_deriv2_neg' (convex_Ioi 0) (continuous_on_log.mono h₁) (λ x (hx : 0 < x), _), rw [function.iterate_succ, function.iterate_one], change (deriv (deriv log)) x < 0, rw [deriv_log', deriv_inv], exact neg_neg_of_pos (inv_pos.2 $ sq_pos_of_ne_zero _ hx.ne'), end lemma strict_concave_on_log_Iio : strict_concave_on ℝ (Iio 0) log := begin have h₁ : Iio 0 ⊆ ({0} : set ℝ)ᶜ, { exact λ x (hx : x < 0) (hx' : x = 0), hx.ne hx' }, refine strict_concave_on_of_deriv2_neg' (convex_Iio 0) (continuous_on_log.mono h₁) (λ x (hx : x < 0), _), rw [function.iterate_succ, function.iterate_one], change (deriv (deriv log)) x < 0, rw [deriv_log', deriv_inv], exact neg_neg_of_pos (inv_pos.2 $ sq_pos_of_ne_zero _ hx.ne), end section sqrt_mul_log lemma has_deriv_at_sqrt_mul_log {x : ℝ} (hx : x ≠ 0) : has_deriv_at (λ x, sqrt x * log x) ((2 + log x) / (2 * sqrt x)) x := begin convert (has_deriv_at_sqrt hx).mul (has_deriv_at_log hx), rw [add_div, div_mul_right (sqrt x) two_ne_zero, ←div_eq_mul_inv, sqrt_div_self', add_comm, div_eq_mul_one_div, mul_comm], end lemma deriv_sqrt_mul_log (x : ℝ) : deriv (λ x, sqrt x * log x) x = (2 + log x) / (2 * sqrt x) := begin cases lt_or_le 0 x with hx hx, { exact (has_deriv_at_sqrt_mul_log hx.ne').deriv }, { rw [sqrt_eq_zero_of_nonpos hx, mul_zero, div_zero], refine has_deriv_within_at.deriv_eq_zero _ (unique_diff_on_Iic 0 x hx), refine (has_deriv_within_at_const x _ 0).congr_of_mem (λ x hx, _) hx, rw [sqrt_eq_zero_of_nonpos hx, zero_mul] }, end lemma deriv_sqrt_mul_log' : deriv (λ x, sqrt x * log x) = λ x, (2 + log x) / (2 * sqrt x) := funext deriv_sqrt_mul_log lemma deriv2_sqrt_mul_log (x : ℝ) : deriv^[2] (λ x, sqrt x * log x) x = -log x / (4 * sqrt x ^ 3) := begin simp only [nat.iterate, deriv_sqrt_mul_log'], cases le_or_lt x 0 with hx hx, { rw [sqrt_eq_zero_of_nonpos hx, zero_pow zero_lt_three, mul_zero, div_zero], refine has_deriv_within_at.deriv_eq_zero _ (unique_diff_on_Iic 0 x hx), refine (has_deriv_within_at_const _ _ 0).congr_of_mem (λ x hx, _) hx, rw [sqrt_eq_zero_of_nonpos hx, mul_zero, div_zero] }, { have h₀ : sqrt x ≠ 0, from sqrt_ne_zero'.2 hx, convert (((has_deriv_at_log hx.ne').const_add 2).div ((has_deriv_at_sqrt hx.ne').const_mul 2) $ mul_ne_zero two_ne_zero h₀).deriv using 1, nth_rewrite 2 [← mul_self_sqrt hx.le], field_simp, ring }, end lemma strict_concave_on_sqrt_mul_log_Ioi : strict_concave_on ℝ (set.Ioi 1) (λ x, sqrt x * log x) := begin apply strict_concave_on_of_deriv2_neg' (convex_Ioi 1) _ (λ x hx, _), { exact continuous_sqrt.continuous_on.mul (continuous_on_log.mono (λ x hx, ne_of_gt (zero_lt_one.trans hx))) }, { rw [deriv2_sqrt_mul_log x], exact div_neg_of_neg_of_pos (neg_neg_of_pos (log_pos hx)) (mul_pos four_pos (pow_pos (sqrt_pos.mpr (zero_lt_one.trans hx)) 3)) }, end end sqrt_mul_log open_locale real lemma strict_concave_on_sin_Icc : strict_concave_on ℝ (Icc 0 π) sin := begin apply strict_concave_on_of_deriv2_neg (convex_Icc _ _) continuous_on_sin (λ x hx, _), rw interior_Icc at hx, simp [sin_pos_of_mem_Ioo hx], end lemma strict_concave_on_cos_Icc : strict_concave_on ℝ (Icc (-(π/2)) (π/2)) cos := begin apply strict_concave_on_of_deriv2_neg (convex_Icc _ _) continuous_on_cos (λ x hx, _), rw interior_Icc at hx, simp [cos_pos_of_mem_Ioo hx], end