/- Copyright (c) 2021 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import analysis.complex.circle import analysis.inner_product_space.l2_space import measure_theory.function.continuous_map_dense import measure_theory.function.l2_space import measure_theory.measure.haar import measure_theory.group.integration import topology.metric_space.emetric_paracompact import topology.continuous_function.stone_weierstrass /-! # Fourier analysis on the circle This file contains basic results on Fourier series. ## Main definitions * `haar_circle`, Haar measure on the circle, normalized to have total measure `1` * instances `measure_space`, `is_probability_measure` for the circle with respect to this measure * for `n : ℤ`, `fourier n` is the monomial `λ z, z ^ n`, bundled as a continuous map from `circle` to `ℂ` * for `n : ℤ` and `p : ℝ≥0∞`, `fourier_Lp p n` is an abbreviation for the monomial `fourier n` considered as an element of the Lᵖ-space `Lp ℂ p haar_circle`, via the embedding `continuous_map.to_Lp` * `fourier_series` is the canonical isometric isomorphism from `Lp ℂ 2 haar_circle` to `ℓ²(ℤ, ℂ)` induced by taking Fourier series ## Main statements The theorem `span_fourier_closure_eq_top` states that the span of the monomials `fourier n` is dense in `C(circle, ℂ)`, i.e. that its `submodule.topological_closure` is `⊤`. This follows from the Stone-Weierstrass theorem after checking that it is a subalgebra, closed under conjugation, and separates points. The theorem `span_fourier_Lp_closure_eq_top` states that for `1 ≤ p < ∞` the span of the monomials `fourier_Lp` is dense in `Lp ℂ p haar_circle`, i.e. that its `submodule.topological_closure` is `⊤`. This follows from the previous theorem using general theory on approximation of Lᵖ functions by continuous functions. The theorem `orthonormal_fourier` states that the monomials `fourier_Lp 2 n` form an orthonormal set (in the L² space of the circle). The last two results together provide that the functions `fourier_Lp 2 n` form a Hilbert basis for L²; this is named as `fourier_series`. Parseval's identity, `tsum_sq_fourier_series_repr`, is a direct consequence of the construction of this Hilbert basis. -/ noncomputable theory open_locale ennreal complex_conjugate classical open topological_space continuous_map measure_theory measure_theory.measure algebra submodule set /-! ### Choice of measure on the circle -/ section haar_circle /-! We make the circle into a measure space, using the Haar measure normalized to have total measure 1. -/ instance : measurable_space circle := borel circle instance : borel_space circle := ⟨rfl⟩ /-- Haar measure on the circle, normalized to have total measure 1. -/ @[derive is_haar_measure] def haar_circle : measure circle := haar_measure ⊤ instance : is_probability_measure haar_circle := ⟨haar_measure_self⟩ instance : measure_space circle := { volume := haar_circle, .. circle.measurable_space } end haar_circle /-! ### Monomials on the circle -/ section monomials /-- The family of monomials `λ z, z ^ n`, parametrized by `n : ℤ` and considered as bundled continuous maps from `circle` to `ℂ`. -/ @[simps] def fourier (n : ℤ) : C(circle, ℂ) := { to_fun := λ z, z ^ n, continuous_to_fun := continuous_subtype_coe.zpow₀ n $ λ z, or.inl (ne_zero_of_mem_circle z) } @[simp] lemma fourier_zero {z : circle} : fourier 0 z = 1 := rfl @[simp] lemma fourier_neg {n : ℤ} {z : circle} : fourier (-n) z = conj (fourier n z) := by simp [← coe_inv_circle_eq_conj z] @[simp] lemma fourier_add {m n : ℤ} {z : circle} : fourier (m + n) z = (fourier m z) * (fourier n z) := by simp [zpow_add₀ (ne_zero_of_mem_circle z)] /-- The subalgebra of `C(circle, ℂ)` generated by `z ^ n` for `n ∈ ℤ`; equivalently, polynomials in `z` and `conj z`. -/ def fourier_subalgebra : subalgebra ℂ C(circle, ℂ) := algebra.adjoin ℂ (range fourier) /-- The subalgebra of `C(circle, ℂ)` generated by `z ^ n` for `n ∈ ℤ` is in fact the linear span of these functions. -/ lemma fourier_subalgebra_coe : fourier_subalgebra.to_submodule = span ℂ (range fourier) := begin apply adjoin_eq_span_of_subset, refine subset.trans _ submodule.subset_span, intros x hx, apply submonoid.closure_induction hx (λ _, id) ⟨0, rfl⟩, rintros _ _ ⟨m, rfl⟩ ⟨n, rfl⟩, refine ⟨m + n, _⟩, ext1 z, exact fourier_add, end /-- The subalgebra of `C(circle, ℂ)` generated by `z ^ n` for `n ∈ ℤ` separates points. -/ lemma fourier_subalgebra_separates_points : fourier_subalgebra.separates_points := begin intros x y hxy, refine ⟨_, ⟨fourier 1, _, rfl⟩, _⟩, { exact subset_adjoin ⟨1, rfl⟩ }, { simp [hxy] } end /-- The subalgebra of `C(circle, ℂ)` generated by `z ^ n` for `n ∈ ℤ` is invariant under complex conjugation. -/ lemma fourier_subalgebra_conj_invariant : conj_invariant_subalgebra (fourier_subalgebra.restrict_scalars ℝ) := begin rintros _ ⟨f, hf, rfl⟩, change _ ∈ fourier_subalgebra, change _ ∈ fourier_subalgebra at hf, apply adjoin_induction hf, { rintros _ ⟨n, rfl⟩, suffices : fourier (-n) ∈ fourier_subalgebra, { convert this, ext1, simp }, exact subset_adjoin ⟨-n, rfl⟩ }, { intros c, exact fourier_subalgebra.algebra_map_mem (conj c) }, { intros f g hf hg, convert fourier_subalgebra.add_mem hf hg, exact alg_hom.map_add _ f g, }, { intros f g hf hg, convert fourier_subalgebra.mul_mem hf hg, exact alg_hom.map_mul _ f g, } end /-- The subalgebra of `C(circle, ℂ)` generated by `z ^ n` for `n ∈ ℤ` is dense. -/ lemma fourier_subalgebra_closure_eq_top : fourier_subalgebra.topological_closure = ⊤ := continuous_map.subalgebra_is_R_or_C_topological_closure_eq_top_of_separates_points fourier_subalgebra fourier_subalgebra_separates_points fourier_subalgebra_conj_invariant /-- The linear span of the monomials `z ^ n` is dense in `C(circle, ℂ)`. -/ lemma span_fourier_closure_eq_top : (span ℂ (range fourier)).topological_closure = ⊤ := begin rw ← fourier_subalgebra_coe, exact congr_arg subalgebra.to_submodule fourier_subalgebra_closure_eq_top, end /-- The family of monomials `λ z, z ^ n`, parametrized by `n : ℤ` and considered as elements of the `Lp` space of functions on `circle` taking values in `ℂ`. -/ abbreviation fourier_Lp (p : ℝ≥0∞) [fact (1 ≤ p)] (n : ℤ) : Lp ℂ p haar_circle := to_Lp p haar_circle ℂ (fourier n) lemma coe_fn_fourier_Lp (p : ℝ≥0∞) [fact (1 ≤ p)] (n : ℤ) : ⇑(fourier_Lp p n) =ᵐ[haar_circle] fourier n := coe_fn_to_Lp haar_circle (fourier n) /-- For each `1 ≤ p < ∞`, the linear span of the monomials `z ^ n` is dense in `Lp ℂ p haar_circle`. -/ lemma span_fourier_Lp_closure_eq_top {p : ℝ≥0∞} [fact (1 ≤ p)] (hp : p ≠ ∞) : (span ℂ (range (fourier_Lp p))).topological_closure = ⊤ := begin convert (continuous_map.to_Lp_dense_range ℂ hp haar_circle ℂ).topological_closure_map_submodule span_fourier_closure_eq_top, rw [map_span, range_comp], simp end /-- For `n ≠ 0`, a rotation by `n⁻¹ * real.pi` negates the monomial `z ^ n`. -/ lemma fourier_add_half_inv_index {n : ℤ} (hn : n ≠ 0) (z : circle) : fourier n ((exp_map_circle (n⁻¹ * real.pi) * z)) = - fourier n z := begin have : ↑n * ((↑n)⁻¹ * ↑real.pi * complex.I) = ↑real.pi * complex.I, { have : (n:ℂ) ≠ 0 := by exact_mod_cast hn, field_simp, ring }, simp [mul_zpow, ← complex.exp_int_mul, complex.exp_pi_mul_I, this] end /-- The monomials `z ^ n` are an orthonormal set with respect to Haar measure on the circle. -/ lemma orthonormal_fourier : orthonormal ℂ (fourier_Lp 2) := begin rw orthonormal_iff_ite, intros i j, rw continuous_map.inner_to_Lp haar_circle (fourier i) (fourier j), split_ifs, { simp [h, is_probability_measure.measure_univ, ← fourier_neg, ← fourier_add, -fourier_apply] }, simp only [← fourier_add, ← fourier_neg], have hij : -i + j ≠ 0, { rw add_comm, exact sub_ne_zero.mpr (ne.symm h) }, exact integral_eq_zero_of_mul_left_eq_neg (fourier_add_half_inv_index hij) end end monomials section fourier /-- We define `fourier_series` to be a `ℤ`-indexed Hilbert basis for `Lp ℂ 2 haar_circle`, which by definition is an isometric isomorphism from `Lp ℂ 2 haar_circle` to `ℓ²(ℤ, ℂ)`. -/ def fourier_series : hilbert_basis ℤ ℂ (Lp ℂ 2 haar_circle) := hilbert_basis.mk orthonormal_fourier (span_fourier_Lp_closure_eq_top (by norm_num)).ge /-- The elements of the Hilbert basis `fourier_series` for `Lp ℂ 2 haar_circle` are the functions `fourier_Lp 2`, the monomials `λ z, z ^ n` on the circle considered as elements of `L2`. -/ @[simp] lemma coe_fourier_series : ⇑fourier_series = fourier_Lp 2 := hilbert_basis.coe_mk _ _ /-- Under the isometric isomorphism `fourier_series` from `Lp ℂ 2 haar_circle` to `ℓ²(ℤ, ℂ)`, the `i`-th coefficient is the integral over the circle of `λ t, t ^ (-i) * f t`. -/ lemma fourier_series_repr (f : Lp ℂ 2 haar_circle) (i : ℤ) : fourier_series.repr f i = ∫ t : circle, t ^ (-i) * f t ∂ haar_circle := begin transitivity ∫ t : circle, conj ((fourier_Lp 2 i : circle → ℂ) t) * f t ∂ haar_circle, { simp [fourier_series.repr_apply_apply f i, measure_theory.L2.inner_def] }, apply integral_congr_ae, filter_upwards [coe_fn_fourier_Lp 2 i] with _ ht, rw [ht, ← fourier_neg], simp [-fourier_neg] end /-- The Fourier series of an `L2` function `f` sums to `f`, in the `L2` topology on the circle. -/ lemma has_sum_fourier_series (f : Lp ℂ 2 haar_circle) : has_sum (λ i, fourier_series.repr f i • fourier_Lp 2 i) f := by simpa using hilbert_basis.has_sum_repr fourier_series f /-- **Parseval's identity**: the sum of the squared norms of the Fourier coefficients equals the `L2` norm of the function. -/ lemma tsum_sq_fourier_series_repr (f : Lp ℂ 2 haar_circle) : ∑' i : ℤ, ∥fourier_series.repr f i∥ ^ 2 = ∫ t : circle, ∥f t∥ ^ 2 ∂ haar_circle := begin have H₁ : ∥fourier_series.repr f∥ ^ 2 = ∑' i, ∥fourier_series.repr f i∥ ^ 2, { exact_mod_cast lp.norm_rpow_eq_tsum _ (fourier_series.repr f), norm_num }, have H₂ : ∥fourier_series.repr f∥ ^ 2 = ∥f∥ ^2 := by simp, have H₃ := congr_arg is_R_or_C.re (@L2.inner_def circle ℂ ℂ _ _ _ _ f f), rw ← integral_re at H₃, { simp only [← norm_sq_eq_inner] at H₃, rw [← H₁, H₂], exact H₃ }, { exact L2.integrable_inner f f }, end end fourier