/- Copyright (c) 2020 Patrick Massot. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Patrick Massot -/ import analysis.specific_limits.basic /-! # Hofer's lemma This is an elementary lemma about complete metric spaces. It is motivated by an application to the bubbling-off analysis for holomorphic curves in symplectic topology. We are *very* far away from having these applications, but the proof here is a nice example of a proof needing to construct a sequence by induction in the middle of the proof. ## References: * H. Hofer and C. Viterbo, *The Weinstein conjecture in the presence of holomorphic spheres* -/ open_locale classical topological_space big_operators open filter finset local notation `d` := dist lemma hofer {X: Type*} [metric_space X] [complete_space X] (x : X) (ε : ℝ) (ε_pos : 0 < ε) {ϕ : X → ℝ} (cont : continuous ϕ) (nonneg : ∀ y, 0 ≤ ϕ y) : ∃ (ε' > 0) (x' : X), ε' ≤ ε ∧ d x' x ≤ 2*ε ∧ ε * ϕ(x) ≤ ε' * ϕ x' ∧ ∀ y, d x' y ≤ ε' → ϕ y ≤ 2*ϕ x' := begin by_contradiction H, have reformulation : ∀ x' (k : ℕ), ε * ϕ x ≤ ε / 2 ^ k * ϕ x' ↔ 2^k * ϕ x ≤ ϕ x', { intros x' k, rw [div_mul_eq_mul_div, le_div_iff, mul_assoc, mul_le_mul_left ε_pos, mul_comm], exact pow_pos (by norm_num) k, }, -- Now let's specialize to `ε/2^k` replace H : ∀ k : ℕ, ∀ x', d x' x ≤ 2 * ε ∧ 2^k * ϕ x ≤ ϕ x' → ∃ y, d x' y ≤ ε/2^k ∧ 2 * ϕ x' < ϕ y, { intros k x', push_neg at H, simpa [reformulation] using H (ε/2^k) (by simp [ε_pos, zero_lt_two]) x' (by simp [ε_pos, zero_lt_two, one_le_two]) }, clear reformulation, haveI : nonempty X := ⟨x⟩, choose! F hF using H, -- Use the axiom of choice -- Now define u by induction starting at x, with u_{n+1} = F(n, u_n) let u : ℕ → X := λ n, nat.rec_on n x F, have hu0 : u 0 = x := rfl, -- The properties of F translate to properties of u have hu : ∀ n, d (u n) x ≤ 2 * ε ∧ 2^n * ϕ x ≤ ϕ (u n) → d (u n) (u $ n + 1) ≤ ε / 2 ^ n ∧ 2 * ϕ (u n) < ϕ (u $ n + 1), { intro n, exact hF n (u n) }, clear hF, -- Key properties of u, to be proven by induction have key : ∀ n, d (u n) (u (n + 1)) ≤ ε / 2 ^ n ∧ 2 * ϕ (u n) < ϕ (u (n + 1)), { intro n, induction n using nat.case_strong_induction_on with n IH, { specialize hu 0, simpa [hu0, mul_nonneg_iff, zero_le_one, ε_pos.le, le_refl] using hu }, have A : d (u (n+1)) x ≤ 2 * ε, { rw [dist_comm], let r := range (n+1), -- range (n+1) = {0, ..., n} calc d (u 0) (u (n + 1)) ≤ ∑ i in r, d (u i) (u $ i+1) : dist_le_range_sum_dist u (n + 1) ... ≤ ∑ i in r, ε/2^i : sum_le_sum (λ i i_in, (IH i $ nat.lt_succ_iff.mp $ finset.mem_range.mp i_in).1) ... = ∑ i in r, (1/2)^i*ε : by { congr' with i, field_simp } ... = (∑ i in r, (1/2)^i)*ε : finset.sum_mul.symm ... ≤ 2*ε : mul_le_mul_of_nonneg_right (sum_geometric_two_le _) (le_of_lt ε_pos), }, have B : 2^(n+1) * ϕ x ≤ ϕ (u (n + 1)), { refine @geom_le (ϕ ∘ u) _ zero_le_two (n + 1) (λ m hm, _), exact (IH _ $ nat.lt_add_one_iff.1 hm).2.le }, exact hu (n+1) ⟨A, B⟩, }, cases forall_and_distrib.mp key with key₁ key₂, clear hu key, -- Hence u is Cauchy have cauchy_u : cauchy_seq u, { refine cauchy_seq_of_le_geometric _ ε one_half_lt_one (λ n, _), simpa only [one_div, inv_pow] using key₁ n }, -- So u converges to some y obtain ⟨y, limy⟩ : ∃ y, tendsto u at_top (𝓝 y), from complete_space.complete cauchy_u, -- And ϕ ∘ u goes to +∞ have lim_top : tendsto (ϕ ∘ u) at_top at_top, { let v := λ n, (ϕ ∘ u) (n+1), suffices : tendsto v at_top at_top, by rwa tendsto_add_at_top_iff_nat at this, have hv₀ : 0 < v 0, { have : 0 ≤ ϕ (u 0) := nonneg x, calc 0 ≤ 2 * ϕ (u 0) : by linarith ... < ϕ (u (0 + 1)) : key₂ 0 }, apply tendsto_at_top_of_geom_le hv₀ one_lt_two, exact λ n, (key₂ (n+1)).le }, -- But ϕ ∘ u also needs to go to ϕ(y) have lim : tendsto (ϕ ∘ u) at_top (𝓝 (ϕ y)), from tendsto.comp cont.continuous_at limy, -- So we have our contradiction! exact not_tendsto_at_top_of_tendsto_nhds lim lim_top, end