/- Copyright (c) 2022 Yury G. Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury G. Kudryashov -/ import analysis.normed.group.completion import analysis.normed_space.operator_norm import topology.algebra.uniform_mul_action /-! # Normed space structure on the completion of a normed space If `E` is a normed space over `𝕜`, then so is `uniform_space.completion E`. In this file we provide necessary instances and define `uniform_space.completion.to_complₗᵢ` - coercion `E → uniform_space.completion E` as a bundled linear isometry. -/ noncomputable theory namespace uniform_space namespace completion variables (𝕜 E : Type*) [normed_field 𝕜] [normed_add_comm_group E] [normed_space 𝕜 E] @[priority 100] instance normed_space.to_has_uniform_continuous_const_smul : has_uniform_continuous_const_smul 𝕜 E := ⟨λ c, (lipschitz_with_smul c).uniform_continuous⟩ instance : normed_space 𝕜 (completion E) := { smul := (•), norm_smul_le := λ c x, induction_on x (is_closed_le (continuous_const_smul _).norm (continuous_const.mul continuous_norm)) $ λ y, by simp only [← coe_smul, norm_coe, norm_smul], .. completion.module } variables {𝕜 E} /-- Embedding of a normed space to its completion as a linear isometry. -/ def to_complₗᵢ : E →ₗᵢ[𝕜] completion E := { to_fun := coe, map_smul' := coe_smul, norm_map' := norm_coe, .. to_compl } @[simp] lemma coe_to_complₗᵢ : ⇑(to_complₗᵢ : E →ₗᵢ[𝕜] completion E) = coe := rfl /-- Embedding of a normed space to its completion as a continuous linear map. -/ def to_complL : E →L[𝕜] completion E := to_complₗᵢ.to_continuous_linear_map @[simp] lemma coe_to_complL : ⇑(to_complL : E →L[𝕜] completion E) = coe := rfl @[simp] lemma norm_to_complL {𝕜 E : Type*} [nontrivially_normed_field 𝕜] [normed_add_comm_group E] [normed_space 𝕜 E] [nontrivial E] : ∥(to_complL : E →L[𝕜] completion E)∥ = 1 := (to_complₗᵢ : E →ₗᵢ[𝕜] completion E).norm_to_continuous_linear_map end completion end uniform_space