/- Copyright (c) 2021 Anatole Dedecker. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Anatole Dedecker, Eric Wieser -/ import analysis.specific_limits.basic import analysis.analytic.basic import analysis.complex.basic import data.nat.choose.cast import data.finset.noncomm_prod /-! # Exponential in a Banach algebra In this file, we define `exp 𝕂 : 𝔸 β†’ 𝔸`, the exponential map in a topological algebra `𝔸` over a field `𝕂`. While for most interesting results we need `𝔸` to be normed algebra, we do not require this in the definition in order to make `exp` independent of a particular choice of norm. The definition also does not require that `𝔸` be complete, but we need to assume it for most results. We then prove some basic results, but we avoid importing derivatives here to minimize dependencies. Results involving derivatives and comparisons with `real.exp` and `complex.exp` can be found in `analysis/special_functions/exponential`. ## Main results We prove most result for an arbitrary field `𝕂`, and then specialize to `𝕂 = ℝ` or `𝕂 = β„‚`. ### General case - `exp_add_of_commute_of_mem_ball` : if `𝕂` has characteristic zero, then given two commuting elements `x` and `y` in the disk of convergence, we have `exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)` - `exp_add_of_mem_ball` : if `𝕂` has characteristic zero and `𝔸` is commutative, then given two elements `x` and `y` in the disk of convergence, we have `exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)` - `exp_neg_of_mem_ball` : if `𝕂` has characteristic zero and `𝔸` is a division ring, then given an element `x` in the disk of convergence, we have `exp 𝕂 (-x) = (exp 𝕂 x)⁻¹`. ### `𝕂 = ℝ` or `𝕂 = β„‚` - `exp_series_radius_eq_top` : the `formal_multilinear_series` defining `exp 𝕂` has infinite radius of convergence - `exp_add_of_commute` : given two commuting elements `x` and `y`, we have `exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)` - `exp_add` : if `𝔸` is commutative, then we have `exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)` for any `x` and `y` - `exp_neg` : if `𝔸` is a division ring, then we have `exp 𝕂 (-x) = (exp 𝕂 x)⁻¹`. - `exp_sum_of_commute` : the analogous result to `exp_add_of_commute` for `finset.sum`. - `exp_sum` : the analogous result to `exp_add` for `finset.sum`. - `exp_nsmul` : repeated addition in the domain corresponds to repeated multiplication in the codomain. - `exp_zsmul` : repeated addition in the domain corresponds to repeated multiplication in the codomain. ### Other useful compatibility results - `exp_eq_exp` : if `𝔸` is a normed algebra over two fields `𝕂` and `𝕂'`, then `exp 𝕂 = exp 𝕂' 𝔸` -/ open filter is_R_or_C continuous_multilinear_map normed_field asymptotics open_locale nat topological_space big_operators ennreal section topological_algebra variables (𝕂 𝔸 : Type*) [field 𝕂] [ring 𝔸] [algebra 𝕂 𝔸] [topological_space 𝔸] [topological_ring 𝔸] /-- `exp_series 𝕂 𝔸` is the `formal_multilinear_series` whose `n`-th term is the map `(xα΅’) : 𝔸ⁿ ↦ (1/n! : 𝕂) β€’ ∏ xα΅’`. Its sum is the exponential map `exp 𝕂 : 𝔸 β†’ 𝔸`. -/ def exp_series : formal_multilinear_series 𝕂 𝔸 𝔸 := Ξ» n, (n!⁻¹ : 𝕂) β€’ continuous_multilinear_map.mk_pi_algebra_fin 𝕂 n 𝔸 variables {𝔸} /-- `exp 𝕂 : 𝔸 β†’ 𝔸` is the exponential map determined by the action of `𝕂` on `𝔸`. It is defined as the sum of the `formal_multilinear_series` `exp_series 𝕂 𝔸`. Note that when `𝔸 = matrix n n 𝕂`, this is the **Matrix Exponential**; see [`analysis.normed_space.matrix_exponential`](../matrix_exponential) for lemmas specific to that case. -/ noncomputable def exp (x : 𝔸) : 𝔸 := (exp_series 𝕂 𝔸).sum x variables {𝕂} lemma exp_series_apply_eq (x : 𝔸) (n : β„•) : exp_series 𝕂 𝔸 n (Ξ» _, x) = (n!⁻¹ : 𝕂) β€’ x^n := by simp [exp_series] lemma exp_series_apply_eq' (x : 𝔸) : (Ξ» n, exp_series 𝕂 𝔸 n (Ξ» _, x)) = (Ξ» n, (n!⁻¹ : 𝕂) β€’ x^n) := funext (exp_series_apply_eq x) lemma exp_series_sum_eq (x : 𝔸) : (exp_series 𝕂 𝔸).sum x = βˆ‘' (n : β„•), (n!⁻¹ : 𝕂) β€’ x^n := tsum_congr (Ξ» n, exp_series_apply_eq x n) lemma exp_eq_tsum : exp 𝕂 = (Ξ» x : 𝔸, βˆ‘' (n : β„•), (n!⁻¹ : 𝕂) β€’ x^n) := funext exp_series_sum_eq @[simp] lemma exp_zero [t2_space 𝔸] : exp 𝕂 (0 : 𝔸) = 1 := begin suffices : (Ξ» x : 𝔸, βˆ‘' (n : β„•), (n!⁻¹ : 𝕂) β€’ x^n) 0 = βˆ‘' (n : β„•), if n = 0 then 1 else 0, { have key : βˆ€ n βˆ‰ ({0} : finset β„•), (if n = 0 then (1 : 𝔸) else 0) = 0, from Ξ» n hn, if_neg (finset.not_mem_singleton.mp hn), rw [exp_eq_tsum, this, tsum_eq_sum key, finset.sum_singleton], simp }, refine tsum_congr (Ξ» n, _), split_ifs with h h; simp [h] end @[simp] lemma exp_op [t2_space 𝔸] (x : 𝔸) : exp 𝕂 (mul_opposite.op x) = mul_opposite.op (exp 𝕂 x) := by simp_rw [exp, exp_series_sum_eq, ←mul_opposite.op_pow, ←mul_opposite.op_smul, tsum_op] @[simp] lemma exp_unop [t2_space 𝔸] (x : 𝔸ᡐᡒᡖ) : exp 𝕂 (mul_opposite.unop x) = mul_opposite.unop (exp 𝕂 x) := by simp_rw [exp, exp_series_sum_eq, ←mul_opposite.unop_pow, ←mul_opposite.unop_smul, tsum_unop] lemma star_exp [t2_space 𝔸] [star_ring 𝔸] [has_continuous_star 𝔸] (x : 𝔸) : star (exp 𝕂 x) = exp 𝕂 (star x) := by simp_rw [exp_eq_tsum, ←star_pow, ←star_inv_nat_cast_smul, ←tsum_star] variables (𝕂) lemma commute.exp_right [t2_space 𝔸] {x y : 𝔸} (h : commute x y) : commute x (exp 𝕂 y) := begin rw exp_eq_tsum, exact commute.tsum_right x (Ξ» n, (h.pow_right n).smul_right _), end lemma commute.exp_left [t2_space 𝔸] {x y : 𝔸} (h : commute x y) : commute (exp 𝕂 x) y := (h.symm.exp_right 𝕂).symm lemma commute.exp [t2_space 𝔸] {x y : 𝔸} (h : commute x y) : commute (exp 𝕂 x) (exp 𝕂 y) := (h.exp_left _).exp_right _ end topological_algebra section topological_division_algebra variables {𝕂 𝔸 : Type*} [field 𝕂] [division_ring 𝔸] [algebra 𝕂 𝔸] [topological_space 𝔸] [topological_ring 𝔸] lemma exp_series_apply_eq_div (x : 𝔸) (n : β„•) : exp_series 𝕂 𝔸 n (Ξ» _, x) = x^n / n! := by rw [div_eq_mul_inv, ←(nat.cast_commute n! (x ^ n)).inv_leftβ‚€.eq, ←smul_eq_mul, exp_series_apply_eq, inv_nat_cast_smul_eq _ _ _ _] lemma exp_series_apply_eq_div' (x : 𝔸) : (Ξ» n, exp_series 𝕂 𝔸 n (Ξ» _, x)) = (Ξ» n, x^n / n!) := funext (exp_series_apply_eq_div x) lemma exp_series_sum_eq_div (x : 𝔸) : (exp_series 𝕂 𝔸).sum x = βˆ‘' (n : β„•), x^n / n! := tsum_congr (exp_series_apply_eq_div x) lemma exp_eq_tsum_div : exp 𝕂 = (Ξ» x : 𝔸, βˆ‘' (n : β„•), x^n / n!) := funext exp_series_sum_eq_div end topological_division_algebra section normed section any_field_any_algebra variables {𝕂 𝔸 𝔹 : Type*} [nontrivially_normed_field 𝕂] variables [normed_ring 𝔸] [normed_ring 𝔹] [normed_algebra 𝕂 𝔸] [normed_algebra 𝕂 𝔹] lemma norm_exp_series_summable_of_mem_ball (x : 𝔸) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : summable (Ξ» n, βˆ₯exp_series 𝕂 𝔸 n (Ξ» _, x)βˆ₯) := (exp_series 𝕂 𝔸).summable_norm_apply hx lemma norm_exp_series_summable_of_mem_ball' (x : 𝔸) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : summable (Ξ» n, βˆ₯(n!⁻¹ : 𝕂) β€’ x^nβˆ₯) := begin change summable (norm ∘ _), rw ← exp_series_apply_eq', exact norm_exp_series_summable_of_mem_ball x hx end section complete_algebra variables [complete_space 𝔸] lemma exp_series_summable_of_mem_ball (x : 𝔸) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : summable (Ξ» n, exp_series 𝕂 𝔸 n (Ξ» _, x)) := summable_of_summable_norm (norm_exp_series_summable_of_mem_ball x hx) lemma exp_series_summable_of_mem_ball' (x : 𝔸) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : summable (Ξ» n, (n!⁻¹ : 𝕂) β€’ x^n) := summable_of_summable_norm (norm_exp_series_summable_of_mem_ball' x hx) lemma exp_series_has_sum_exp_of_mem_ball (x : 𝔸) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : has_sum (Ξ» n, exp_series 𝕂 𝔸 n (Ξ» _, x)) (exp 𝕂 x) := formal_multilinear_series.has_sum (exp_series 𝕂 𝔸) hx lemma exp_series_has_sum_exp_of_mem_ball' (x : 𝔸) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : has_sum (Ξ» n, (n!⁻¹ : 𝕂) β€’ x^n) (exp 𝕂 x):= begin rw ← exp_series_apply_eq', exact exp_series_has_sum_exp_of_mem_ball x hx end lemma has_fpower_series_on_ball_exp_of_radius_pos (h : 0 < (exp_series 𝕂 𝔸).radius) : has_fpower_series_on_ball (exp 𝕂) (exp_series 𝕂 𝔸) 0 (exp_series 𝕂 𝔸).radius := (exp_series 𝕂 𝔸).has_fpower_series_on_ball h lemma has_fpower_series_at_exp_zero_of_radius_pos (h : 0 < (exp_series 𝕂 𝔸).radius) : has_fpower_series_at (exp 𝕂) (exp_series 𝕂 𝔸) 0 := (has_fpower_series_on_ball_exp_of_radius_pos h).has_fpower_series_at lemma continuous_on_exp : continuous_on (exp 𝕂 : 𝔸 β†’ 𝔸) (emetric.ball 0 (exp_series 𝕂 𝔸).radius) := formal_multilinear_series.continuous_on lemma analytic_at_exp_of_mem_ball (x : 𝔸) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : analytic_at 𝕂 (exp 𝕂) x:= begin by_cases h : (exp_series 𝕂 𝔸).radius = 0, { rw h at hx, exact (ennreal.not_lt_zero hx).elim }, { have h := pos_iff_ne_zero.mpr h, exact (has_fpower_series_on_ball_exp_of_radius_pos h).analytic_at_of_mem hx } end /-- In a Banach-algebra `𝔸` over a normed field `𝕂` of characteristic zero, if `x` and `y` are in the disk of convergence and commute, then `exp 𝕂 (x + y) = (exp 𝕂 x) * (exp 𝕂 y)`. -/ lemma exp_add_of_commute_of_mem_ball [char_zero 𝕂] {x y : 𝔸} (hxy : commute x y) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) (hy : y ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : exp 𝕂 (x + y) = (exp 𝕂 x) * (exp 𝕂 y) := begin rw [exp_eq_tsum, tsum_mul_tsum_eq_tsum_sum_antidiagonal_of_summable_norm (norm_exp_series_summable_of_mem_ball' x hx) (norm_exp_series_summable_of_mem_ball' y hy)], dsimp only, conv_lhs {congr, funext, rw [hxy.add_pow' _, finset.smul_sum]}, refine tsum_congr (Ξ» n, finset.sum_congr rfl $ Ξ» kl hkl, _), rw [nsmul_eq_smul_cast 𝕂, smul_smul, smul_mul_smul, ← (finset.nat.mem_antidiagonal.mp hkl), nat.cast_add_choose, (finset.nat.mem_antidiagonal.mp hkl)], congr' 1, have : (n! : 𝕂) β‰  0 := nat.cast_ne_zero.mpr n.factorial_ne_zero, field_simp [this] end /-- `exp 𝕂 x` has explicit two-sided inverse `exp 𝕂 (-x)`. -/ noncomputable def invertible_exp_of_mem_ball [char_zero 𝕂] {x : 𝔸} (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : invertible (exp 𝕂 x) := { inv_of := exp 𝕂 (-x), inv_of_mul_self := begin have hnx : -x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius, { rw [emetric.mem_ball, ←neg_zero, edist_neg_neg], exact hx }, rw [←exp_add_of_commute_of_mem_ball (commute.neg_left $ commute.refl x) hnx hx, neg_add_self, exp_zero], end, mul_inv_of_self := begin have hnx : -x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius, { rw [emetric.mem_ball, ←neg_zero, edist_neg_neg], exact hx }, rw [←exp_add_of_commute_of_mem_ball (commute.neg_right $ commute.refl x) hx hnx, add_neg_self, exp_zero], end } lemma is_unit_exp_of_mem_ball [char_zero 𝕂] {x : 𝔸} (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : is_unit (exp 𝕂 x) := @is_unit_of_invertible _ _ _ (invertible_exp_of_mem_ball hx) lemma inv_of_exp_of_mem_ball [char_zero 𝕂] {x : 𝔸} (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) [invertible (exp 𝕂 x)] : β…Ÿ(exp 𝕂 x) = exp 𝕂 (-x) := by { letI := invertible_exp_of_mem_ball hx, convert (rfl : β…Ÿ(exp 𝕂 x) = _) } /-- Any continuous ring homomorphism commutes with `exp`. -/ lemma map_exp_of_mem_ball {F} [ring_hom_class F 𝔸 𝔹] (f : F) (hf : continuous f) (x : 𝔸) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : f (exp 𝕂 x) = exp 𝕂 (f x) := begin rw [exp_eq_tsum, exp_eq_tsum], refine ((exp_series_summable_of_mem_ball' _ hx).has_sum.map f hf).tsum_eq.symm.trans _, dsimp only [function.comp], simp_rw [one_div, map_inv_nat_cast_smul f 𝕂 𝕂, map_pow], end end complete_algebra lemma algebra_map_exp_comm_of_mem_ball [complete_space 𝕂] (x : 𝕂) (hx : x ∈ emetric.ball (0 : 𝕂) (exp_series 𝕂 𝕂).radius) : algebra_map 𝕂 𝔸 (exp 𝕂 x) = exp 𝕂 (algebra_map 𝕂 𝔸 x) := map_exp_of_mem_ball _ (algebra_map_clm _ _).continuous _ hx end any_field_any_algebra section any_field_division_algebra variables {𝕂 𝔸 : Type*} [nontrivially_normed_field 𝕂] [normed_division_ring 𝔸] [normed_algebra 𝕂 𝔸] variables (𝕂) lemma norm_exp_series_div_summable_of_mem_ball (x : 𝔸) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : summable (Ξ» n, βˆ₯x^n / n!βˆ₯) := begin change summable (norm ∘ _), rw ← exp_series_apply_eq_div' x, exact norm_exp_series_summable_of_mem_ball x hx end lemma exp_series_div_summable_of_mem_ball [complete_space 𝔸] (x : 𝔸) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : summable (Ξ» n, x^n / n!) := summable_of_summable_norm (norm_exp_series_div_summable_of_mem_ball 𝕂 x hx) lemma exp_series_div_has_sum_exp_of_mem_ball [complete_space 𝔸] (x : 𝔸) (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : has_sum (Ξ» n, x^n / n!) (exp 𝕂 x) := begin rw ← exp_series_apply_eq_div' x, exact exp_series_has_sum_exp_of_mem_ball x hx end variables {𝕂} lemma exp_neg_of_mem_ball [char_zero 𝕂] [complete_space 𝔸] {x : 𝔸} (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : exp 𝕂 (-x) = (exp 𝕂 x)⁻¹ := begin letI := invertible_exp_of_mem_ball hx, exact inv_of_eq_inv (exp 𝕂 x), end end any_field_division_algebra section any_field_comm_algebra variables {𝕂 𝔸 : Type*} [nontrivially_normed_field 𝕂] [normed_comm_ring 𝔸] [normed_algebra 𝕂 𝔸] [complete_space 𝔸] /-- In a commutative Banach-algebra `𝔸` over a normed field `𝕂` of characteristic zero, `exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)` for all `x`, `y` in the disk of convergence. -/ lemma exp_add_of_mem_ball [char_zero 𝕂] {x y : 𝔸} (hx : x ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) (hy : y ∈ emetric.ball (0 : 𝔸) (exp_series 𝕂 𝔸).radius) : exp 𝕂 (x + y) = (exp 𝕂 x) * (exp 𝕂 y) := exp_add_of_commute_of_mem_ball (commute.all x y) hx hy end any_field_comm_algebra section is_R_or_C section any_algebra variables (𝕂 𝔸 𝔹 : Type*) [is_R_or_C 𝕂] [normed_ring 𝔸] [normed_algebra 𝕂 𝔸] variables [normed_ring 𝔹] [normed_algebra 𝕂 𝔹] /-- In a normed algebra `𝔸` over `𝕂 = ℝ` or `𝕂 = β„‚`, the series defining the exponential map has an infinite radius of convergence. -/ lemma exp_series_radius_eq_top : (exp_series 𝕂 𝔸).radius = ∞ := begin refine (exp_series 𝕂 𝔸).radius_eq_top_of_summable_norm (Ξ» r, _), refine summable_of_norm_bounded_eventually _ (real.summable_pow_div_factorial r) _, filter_upwards [eventually_cofinite_ne 0] with n hn, rw [norm_mul, norm_norm (exp_series 𝕂 𝔸 n), exp_series, norm_smul, norm_inv, norm_pow, nnreal.norm_eq, norm_eq_abs, abs_cast_nat, mul_comm, ←mul_assoc, ←div_eq_mul_inv], have : βˆ₯continuous_multilinear_map.mk_pi_algebra_fin 𝕂 n 𝔸βˆ₯ ≀ 1 := norm_mk_pi_algebra_fin_le_of_pos (nat.pos_of_ne_zero hn), exact mul_le_of_le_one_right (div_nonneg (pow_nonneg r.coe_nonneg n) n!.cast_nonneg) this end lemma exp_series_radius_pos : 0 < (exp_series 𝕂 𝔸).radius := begin rw exp_series_radius_eq_top, exact with_top.zero_lt_top end variables {𝕂 𝔸 𝔹} lemma norm_exp_series_summable (x : 𝔸) : summable (Ξ» n, βˆ₯exp_series 𝕂 𝔸 n (Ξ» _, x)βˆ₯) := norm_exp_series_summable_of_mem_ball x ((exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _) lemma norm_exp_series_summable' (x : 𝔸) : summable (Ξ» n, βˆ₯(n!⁻¹ : 𝕂) β€’ x^nβˆ₯) := norm_exp_series_summable_of_mem_ball' x ((exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _) section complete_algebra variables [complete_space 𝔸] lemma exp_series_summable (x : 𝔸) : summable (Ξ» n, exp_series 𝕂 𝔸 n (Ξ» _, x)) := summable_of_summable_norm (norm_exp_series_summable x) lemma exp_series_summable' (x : 𝔸) : summable (Ξ» n, (n!⁻¹ : 𝕂) β€’ x^n) := summable_of_summable_norm (norm_exp_series_summable' x) lemma exp_series_has_sum_exp (x : 𝔸) : has_sum (Ξ» n, exp_series 𝕂 𝔸 n (Ξ» _, x)) (exp 𝕂 x) := exp_series_has_sum_exp_of_mem_ball x ((exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _) lemma exp_series_has_sum_exp' (x : 𝔸) : has_sum (Ξ» n, (n!⁻¹ : 𝕂) β€’ x^n) (exp 𝕂 x):= exp_series_has_sum_exp_of_mem_ball' x ((exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _) lemma exp_has_fpower_series_on_ball : has_fpower_series_on_ball (exp 𝕂) (exp_series 𝕂 𝔸) 0 ∞ := exp_series_radius_eq_top 𝕂 𝔸 β–Έ has_fpower_series_on_ball_exp_of_radius_pos (exp_series_radius_pos _ _) lemma exp_has_fpower_series_at_zero : has_fpower_series_at (exp 𝕂) (exp_series 𝕂 𝔸) 0 := exp_has_fpower_series_on_ball.has_fpower_series_at lemma exp_continuous : continuous (exp 𝕂 : 𝔸 β†’ 𝔸) := begin rw [continuous_iff_continuous_on_univ, ← metric.eball_top_eq_univ (0 : 𝔸), ← exp_series_radius_eq_top 𝕂 𝔸], exact continuous_on_exp end lemma exp_analytic (x : 𝔸) : analytic_at 𝕂 (exp 𝕂) x := analytic_at_exp_of_mem_ball x ((exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _) /-- In a Banach-algebra `𝔸` over `𝕂 = ℝ` or `𝕂 = β„‚`, if `x` and `y` commute, then `exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)`. -/ lemma exp_add_of_commute {x y : 𝔸} (hxy : commute x y) : exp 𝕂 (x + y) = (exp 𝕂 x) * (exp 𝕂 y) := exp_add_of_commute_of_mem_ball hxy ((exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _) ((exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _) section variables (𝕂) /-- `exp 𝕂 x` has explicit two-sided inverse `exp 𝕂 (-x)`. -/ noncomputable def invertible_exp (x : 𝔸) : invertible (exp 𝕂 x) := invertible_exp_of_mem_ball $ (exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _ lemma is_unit_exp (x : 𝔸) : is_unit (exp 𝕂 x) := is_unit_exp_of_mem_ball $ (exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _ lemma inv_of_exp (x : 𝔸) [invertible (exp 𝕂 x)] : β…Ÿ(exp 𝕂 x) = exp 𝕂 (-x) := inv_of_exp_of_mem_ball $ (exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _ lemma ring.inverse_exp (x : 𝔸) : ring.inverse (exp 𝕂 x) = exp 𝕂 (-x) := begin letI := invertible_exp 𝕂 x, exact ring.inverse_invertible _, end end /-- In a Banach-algebra `𝔸` over `𝕂 = ℝ` or `𝕂 = β„‚`, if a family of elements `f i` mutually commute then `exp 𝕂 (βˆ‘ i, f i) = ∏ i, exp 𝕂 (f i)`. -/ lemma exp_sum_of_commute {ΞΉ} (s : finset ΞΉ) (f : ΞΉ β†’ 𝔸) (h : βˆ€ (i ∈ s) (j ∈ s), commute (f i) (f j)) : exp 𝕂 (βˆ‘ i in s, f i) = s.noncomm_prod (Ξ» i, exp 𝕂 (f i)) (Ξ» i hi j hj, (h i hi j hj).exp 𝕂) := begin classical, induction s using finset.induction_on with a s ha ih, { simp }, rw [finset.noncomm_prod_insert_of_not_mem _ _ _ _ ha, finset.sum_insert ha, exp_add_of_commute, ih], refine commute.sum_right _ _ _ _, intros i hi, exact h _ (finset.mem_insert_self _ _) _ (finset.mem_insert_of_mem hi), end lemma exp_nsmul (n : β„•) (x : 𝔸) : exp 𝕂 (n β€’ x) = exp 𝕂 x ^ n := begin induction n with n ih, { rw [zero_smul, pow_zero, exp_zero], }, { rw [succ_nsmul, pow_succ, exp_add_of_commute ((commute.refl x).smul_right n), ih] } end variables (𝕂) /-- Any continuous ring homomorphism commutes with `exp`. -/ lemma map_exp {F} [ring_hom_class F 𝔸 𝔹] (f : F) (hf : continuous f) (x : 𝔸) : f (exp 𝕂 x) = exp 𝕂 (f x) := map_exp_of_mem_ball f hf x $ (exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _ lemma exp_smul {G} [monoid G] [mul_semiring_action G 𝔸] [has_continuous_const_smul G 𝔸] (g : G) (x : 𝔸) : exp 𝕂 (g β€’ x) = g β€’ exp 𝕂 x := (map_exp 𝕂 (mul_semiring_action.to_ring_hom G 𝔸 g) (continuous_const_smul _) x).symm lemma exp_units_conj (y : 𝔸ˣ) (x : 𝔸) : exp 𝕂 (y * x * ↑(y⁻¹) : 𝔸) = y * exp 𝕂 x * ↑(y⁻¹) := exp_smul _ (conj_act.to_conj_act y) x lemma exp_units_conj' (y : 𝔸ˣ) (x : 𝔸) : exp 𝕂 (↑(y⁻¹) * x * y) = ↑(y⁻¹) * exp 𝕂 x * y := exp_units_conj _ _ _ @[simp] lemma prod.fst_exp [complete_space 𝔹] (x : 𝔸 Γ— 𝔹) : (exp 𝕂 x).fst = exp 𝕂 x.fst := map_exp _ (ring_hom.fst 𝔸 𝔹) continuous_fst x @[simp] lemma prod.snd_exp [complete_space 𝔹] (x : 𝔸 Γ— 𝔹) : (exp 𝕂 x).snd = exp 𝕂 x.snd := map_exp _ (ring_hom.snd 𝔸 𝔹) continuous_snd x @[simp] lemma pi.exp_apply {ΞΉ : Type*} {𝔸 : ΞΉ β†’ Type*} [fintype ΞΉ] [Ξ  i, normed_ring (𝔸 i)] [Ξ  i, normed_algebra 𝕂 (𝔸 i)] [Ξ  i, complete_space (𝔸 i)] (x : Ξ  i, 𝔸 i) (i : ΞΉ) : exp 𝕂 x i = exp 𝕂 (x i) := begin -- Lean struggles to infer this instance due to it wanting `[Ξ  i, semi_normed_ring (𝔸 i)]` letI : normed_algebra 𝕂 (Ξ  i, 𝔸 i) := pi.normed_algebra _, exact map_exp _ (pi.eval_ring_hom 𝔸 i) (continuous_apply _) x end lemma pi.exp_def {ΞΉ : Type*} {𝔸 : ΞΉ β†’ Type*} [fintype ΞΉ] [Ξ  i, normed_ring (𝔸 i)] [Ξ  i, normed_algebra 𝕂 (𝔸 i)] [Ξ  i, complete_space (𝔸 i)] (x : Ξ  i, 𝔸 i) : exp 𝕂 x = Ξ» i, exp 𝕂 (x i) := funext $ pi.exp_apply 𝕂 x lemma function.update_exp {ΞΉ : Type*} {𝔸 : ΞΉ β†’ Type*} [fintype ΞΉ] [decidable_eq ΞΉ] [Ξ  i, normed_ring (𝔸 i)] [Ξ  i, normed_algebra 𝕂 (𝔸 i)] [Ξ  i, complete_space (𝔸 i)] (x : Ξ  i, 𝔸 i) (j : ΞΉ) (xj : 𝔸 j) : function.update (exp 𝕂 x) j (exp 𝕂 xj) = exp 𝕂 (function.update x j xj) := begin ext i, simp_rw [pi.exp_def], exact (function.apply_update (Ξ» i, exp 𝕂) x j xj i).symm, end end complete_algebra lemma algebra_map_exp_comm (x : 𝕂) : algebra_map 𝕂 𝔸 (exp 𝕂 x) = exp 𝕂 (algebra_map 𝕂 𝔸 x) := algebra_map_exp_comm_of_mem_ball x $ (exp_series_radius_eq_top 𝕂 𝕂).symm β–Έ edist_lt_top _ _ end any_algebra section division_algebra variables {𝕂 𝔸 : Type*} [is_R_or_C 𝕂] [normed_division_ring 𝔸] [normed_algebra 𝕂 𝔸] variables (𝕂) lemma norm_exp_series_div_summable (x : 𝔸) : summable (Ξ» n, βˆ₯x^n / n!βˆ₯) := norm_exp_series_div_summable_of_mem_ball 𝕂 x ((exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _) variables [complete_space 𝔸] lemma exp_series_div_summable (x : 𝔸) : summable (Ξ» n, x^n / n!) := summable_of_summable_norm (norm_exp_series_div_summable 𝕂 x) lemma exp_series_div_has_sum_exp (x : 𝔸) : has_sum (Ξ» n, x^n / n!) (exp 𝕂 x):= exp_series_div_has_sum_exp_of_mem_ball 𝕂 x ((exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _) variables {𝕂} lemma exp_neg (x : 𝔸) : exp 𝕂 (-x) = (exp 𝕂 x)⁻¹ := exp_neg_of_mem_ball $ (exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _ lemma exp_zsmul (z : β„€) (x : 𝔸) : exp 𝕂 (z β€’ x) = (exp 𝕂 x) ^ z := begin obtain ⟨n, rfl | rfl⟩ := z.eq_coe_or_neg, { rw [zpow_coe_nat, coe_nat_zsmul, exp_nsmul] }, { rw [zpow_neg, zpow_coe_nat, neg_smul, exp_neg, coe_nat_zsmul, exp_nsmul] }, end lemma exp_conj (y : 𝔸) (x : 𝔸) (hy : y β‰  0) : exp 𝕂 (y * x * y⁻¹) = y * exp 𝕂 x * y⁻¹ := exp_units_conj _ (units.mk0 y hy) x lemma exp_conj' (y : 𝔸) (x : 𝔸) (hy : y β‰  0) : exp 𝕂 (y⁻¹ * x * y) = y⁻¹ * exp 𝕂 x * y := exp_units_conj' _ (units.mk0 y hy) x end division_algebra section comm_algebra variables {𝕂 𝔸 : Type*} [is_R_or_C 𝕂] [normed_comm_ring 𝔸] [normed_algebra 𝕂 𝔸] [complete_space 𝔸] /-- In a commutative Banach-algebra `𝔸` over `𝕂 = ℝ` or `𝕂 = β„‚`, `exp 𝕂 (x+y) = (exp 𝕂 x) * (exp 𝕂 y)`. -/ lemma exp_add {x y : 𝔸} : exp 𝕂 (x + y) = (exp 𝕂 x) * (exp 𝕂 y) := exp_add_of_mem_ball ((exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _) ((exp_series_radius_eq_top 𝕂 𝔸).symm β–Έ edist_lt_top _ _) /-- A version of `exp_sum_of_commute` for a commutative Banach-algebra. -/ lemma exp_sum {ΞΉ} (s : finset ΞΉ) (f : ΞΉ β†’ 𝔸) : exp 𝕂 (βˆ‘ i in s, f i) = ∏ i in s, exp 𝕂 (f i) := begin rw [exp_sum_of_commute, finset.noncomm_prod_eq_prod], exact Ξ» i hi j hj, commute.all _ _, end end comm_algebra end is_R_or_C end normed section scalar_tower variables (𝕂 𝕂' 𝔸 : Type*) [field 𝕂] [field 𝕂'] [ring 𝔸] [algebra 𝕂 𝔸] [algebra 𝕂' 𝔸] [topological_space 𝔸] [topological_ring 𝔸] /-- If a normed ring `𝔸` is a normed algebra over two fields, then they define the same `exp_series` on `𝔸`. -/ lemma exp_series_eq_exp_series (n : β„•) (x : 𝔸) : (exp_series 𝕂 𝔸 n (Ξ» _, x)) = (exp_series 𝕂' 𝔸 n (Ξ» _, x)) := by rw [exp_series_apply_eq, exp_series_apply_eq, inv_nat_cast_smul_eq 𝕂 𝕂'] /-- If a normed ring `𝔸` is a normed algebra over two fields, then they define the same exponential function on `𝔸`. -/ lemma exp_eq_exp : (exp 𝕂 : 𝔸 β†’ 𝔸) = exp 𝕂' := begin ext, rw [exp, exp], refine tsum_congr (Ξ» n, _), rw exp_series_eq_exp_series 𝕂 𝕂' 𝔸 n x end lemma exp_ℝ_β„‚_eq_exp_β„‚_β„‚ : (exp ℝ : β„‚ β†’ β„‚) = exp β„‚ := exp_eq_exp ℝ β„‚ β„‚ end scalar_tower