/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov -/ import analysis.normed_space.ray import topology.local_extr /-! # (Local) maximums in a normed space In this file we prove the following lemma, see `is_max_filter.norm_add_same_ray`. If `f : α → E` is a function such that `norm ∘ f` has a maximum along a filter `l` at a point `c` and `y` is a vector on the same ray as `f c`, then the function `λ x, ∥f x + y∥` has a maximul along `l` at `c`. Then we specialize it to the case `y = f c` and to different special cases of `is_max_filter`: `is_max_on`, `is_local_max_on`, and `is_local_max`. ## Tags local maximum, normed space -/ variables {α X E : Type*} [seminormed_add_comm_group E] [normed_space ℝ E] [topological_space X] section variables {f : α → E} {l : filter α} {s : set α} {c : α} {y : E} /-- If `f : α → E` is a function such that `norm ∘ f` has a maximum along a filter `l` at a point `c` and `y` is a vector on the same ray as `f c`, then the function `λ x, ∥f x + y∥` has a maximul along `l` at `c`. -/ lemma is_max_filter.norm_add_same_ray (h : is_max_filter (norm ∘ f) l c) (hy : same_ray ℝ (f c) y) : is_max_filter (λ x, ∥f x + y∥) l c := h.mono $ λ x hx, calc ∥f x + y∥ ≤ ∥f x∥ + ∥y∥ : norm_add_le _ _ ... ≤ ∥f c∥ + ∥y∥ : add_le_add_right hx _ ... = ∥f c + y∥ : hy.norm_add.symm /-- If `f : α → E` is a function such that `norm ∘ f` has a maximum along a filter `l` at a point `c`, then the function `λ x, ∥f x + f c∥` has a maximul along `l` at `c`. -/ lemma is_max_filter.norm_add_self (h : is_max_filter (norm ∘ f) l c) : is_max_filter (λ x, ∥f x + f c∥) l c := h.norm_add_same_ray same_ray.rfl /-- If `f : α → E` is a function such that `norm ∘ f` has a maximum on a set `s` at a point `c` and `y` is a vector on the same ray as `f c`, then the function `λ x, ∥f x + y∥` has a maximul on `s` at `c`. -/ lemma is_max_on.norm_add_same_ray (h : is_max_on (norm ∘ f) s c) (hy : same_ray ℝ (f c) y) : is_max_on (λ x, ∥f x + y∥) s c := h.norm_add_same_ray hy /-- If `f : α → E` is a function such that `norm ∘ f` has a maximum on a set `s` at a point `c`, then the function `λ x, ∥f x + f c∥` has a maximul on `s` at `c`. -/ lemma is_max_on.norm_add_self (h : is_max_on (norm ∘ f) s c) : is_max_on (λ x, ∥f x + f c∥) s c := h.norm_add_self end variables {f : X → E} {s : set X} {c : X} {y : E} /-- If `f : α → E` is a function such that `norm ∘ f` has a local maximum on a set `s` at a point `c` and `y` is a vector on the same ray as `f c`, then the function `λ x, ∥f x + y∥` has a local maximul on `s` at `c`. -/ lemma is_local_max_on.norm_add_same_ray (h : is_local_max_on (norm ∘ f) s c) (hy : same_ray ℝ (f c) y) : is_local_max_on (λ x, ∥f x + y∥) s c := h.norm_add_same_ray hy /-- If `f : α → E` is a function such that `norm ∘ f` has a local maximum on a set `s` at a point `c`, then the function `λ x, ∥f x + f c∥` has a local maximul on `s` at `c`. -/ lemma is_local_max_on.norm_add_self (h : is_local_max_on (norm ∘ f) s c) : is_local_max_on (λ x, ∥f x + f c∥) s c := h.norm_add_self /-- If `f : α → E` is a function such that `norm ∘ f` has a local maximum at a point `c` and `y` is a vector on the same ray as `f c`, then the function `λ x, ∥f x + y∥` has a local maximul at `c`. -/ lemma is_local_max.norm_add_same_ray (h : is_local_max (norm ∘ f) c) (hy : same_ray ℝ (f c) y) : is_local_max (λ x, ∥f x + y∥) c := h.norm_add_same_ray hy /-- If `f : α → E` is a function such that `norm ∘ f` has a local maximum at a point `c`, then the function `λ x, ∥f x + f c∥` has a local maximul at `c`. -/ lemma is_local_max.norm_add_self (h : is_local_max (norm ∘ f) c) : is_local_max (λ x, ∥f x + f c∥) c := h.norm_add_self