/- Copyright (c) 2022 Yury Kudryashov. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Yury Kudryashov, Yaël Dillies -/ import linear_algebra.ray import analysis.normed_space.basic /-! # Rays in a real normed vector space In this file we prove some lemmas about the `same_ray` predicate in case of a real normed space. In this case, for two vectors `x y` in the same ray, the norm of their sum is equal to the sum of their norms and `∥y∥ • x = ∥x∥ • y`. -/ open real variables {E : Type*} [seminormed_add_comm_group E] [normed_space ℝ E] {F : Type*} [normed_add_comm_group F] [normed_space ℝ F] namespace same_ray variables {x y : E} /-- If `x` and `y` are on the same ray, then the triangle inequality becomes the equality: the norm of `x + y` is the sum of the norms of `x` and `y`. The converse is true for a strictly convex space. -/ lemma norm_add (h : same_ray ℝ x y) : ∥x + y∥ = ∥x∥ + ∥y∥ := begin rcases h.exists_eq_smul with ⟨u, a, b, ha, hb, -, rfl, rfl⟩, rw [← add_smul, norm_smul_of_nonneg (add_nonneg ha hb), norm_smul_of_nonneg ha, norm_smul_of_nonneg hb, add_mul] end lemma norm_sub (h : same_ray ℝ x y) : ∥x - y∥ = |∥x∥ - ∥y∥| := begin rcases h.exists_eq_smul with ⟨u, a, b, ha, hb, -, rfl, rfl⟩, wlog hab : b ≤ a := le_total b a using [a b, b a] tactic.skip, { rw ← sub_nonneg at hab, rw [← sub_smul, norm_smul_of_nonneg hab, norm_smul_of_nonneg ha, norm_smul_of_nonneg hb, ← sub_mul, abs_of_nonneg (mul_nonneg hab (norm_nonneg _))] }, { intros ha hb hab, rw [norm_sub_rev, this hb ha hab.symm, abs_sub_comm] } end lemma norm_smul_eq (h : same_ray ℝ x y) : ∥x∥ • y = ∥y∥ • x := begin rcases h.exists_eq_smul with ⟨u, a, b, ha, hb, -, rfl, rfl⟩, simp only [norm_smul_of_nonneg, *, mul_smul, smul_comm (∥u∥)], apply smul_comm end end same_ray variables {x y : F} lemma norm_inj_on_ray_left (hx : x ≠ 0) : {y | same_ray ℝ x y}.inj_on norm := begin rintro y hy z hz h, rcases hy.exists_nonneg_left hx with ⟨r, hr, rfl⟩, rcases hz.exists_nonneg_left hx with ⟨s, hs, rfl⟩, rw [norm_smul, norm_smul, mul_left_inj' (norm_ne_zero_iff.2 hx), norm_of_nonneg hr, norm_of_nonneg hs] at h, rw h end lemma norm_inj_on_ray_right (hy : y ≠ 0) : {x | same_ray ℝ x y}.inj_on norm := by simpa only [same_ray_comm] using norm_inj_on_ray_left hy lemma same_ray_iff_norm_smul_eq : same_ray ℝ x y ↔ ∥x∥ • y = ∥y∥ • x := ⟨same_ray.norm_smul_eq, λ h, or_iff_not_imp_left.2 $ λ hx, or_iff_not_imp_left.2 $ λ hy, ⟨∥y∥, ∥x∥, norm_pos_iff.2 hy, norm_pos_iff.2 hx, h.symm⟩⟩ /-- Two nonzero vectors `x y` in a real normed space are on the same ray if and only if the unit vectors `∥x∥⁻¹ • x` and `∥y∥⁻¹ • y` are equal. -/ lemma same_ray_iff_inv_norm_smul_eq_of_ne (hx : x ≠ 0) (hy : y ≠ 0) : same_ray ℝ x y ↔ ∥x∥⁻¹ • x = ∥y∥⁻¹ • y := by rw [inv_smul_eq_iff₀, smul_comm, eq_comm, inv_smul_eq_iff₀, same_ray_iff_norm_smul_eq]; rwa norm_ne_zero_iff alias same_ray_iff_inv_norm_smul_eq_of_ne ↔ same_ray.inv_norm_smul_eq _ /-- Two vectors `x y` in a real normed space are on the ray if and only if one of them is zero or the unit vectors `∥x∥⁻¹ • x` and `∥y∥⁻¹ • y` are equal. -/ lemma same_ray_iff_inv_norm_smul_eq : same_ray ℝ x y ↔ x = 0 ∨ y = 0 ∨ ∥x∥⁻¹ • x = ∥y∥⁻¹ • y := begin rcases eq_or_ne x 0 with rfl|hx, { simp [same_ray.zero_left] }, rcases eq_or_ne y 0 with rfl|hy, { simp [same_ray.zero_right] }, simp only [same_ray_iff_inv_norm_smul_eq_of_ne hx hy, *, false_or] end /-- Two vectors of the same norm are on the same ray if and only if they are equal. -/ lemma same_ray_iff_of_norm_eq (h : ∥x∥ = ∥y∥) : same_ray ℝ x y ↔ x = y := begin obtain rfl | hy := eq_or_ne y 0, { rw [norm_zero, norm_eq_zero] at h, exact iff_of_true (same_ray.zero_right _) h }, { exact ⟨λ hxy, norm_inj_on_ray_right hy hxy same_ray.rfl h, λ hxy, hxy ▸ same_ray.rfl⟩ } end lemma not_same_ray_iff_of_norm_eq (h : ∥x∥ = ∥y∥) : ¬ same_ray ℝ x y ↔ x ≠ y := (same_ray_iff_of_norm_eq h).not /-- If two points on the same ray have the same norm, then they are equal. -/ lemma same_ray.eq_of_norm_eq (h : same_ray ℝ x y) (hn : ∥x∥ = ∥y∥) : x = y := (same_ray_iff_of_norm_eq hn).mp h /-- The norms of two vectors on the same ray are equal if and only if they are equal. -/ lemma same_ray.norm_eq_iff (h : same_ray ℝ x y) : ∥x∥ = ∥y∥ ↔ x = y := ⟨h.eq_of_norm_eq, λ h, h ▸ rfl⟩