/- Copyright (c) 2020 Heather Macbeth. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Heather Macbeth -/ import analysis.specific_limits.normed /-! # The group of units of a complete normed ring This file contains the basic theory for the group of units (invertible elements) of a complete normed ring (Banach algebras being a notable special case). ## Main results The constructions `one_sub`, `add` and `unit_of_nearby` state, in varying forms, that perturbations of a unit are units. The latter two are not stated in their optimal form; more precise versions would use the spectral radius. The first main result is `is_open`: the group of units of a complete normed ring is an open subset of the ring. The function `inverse` (defined in `algebra.ring`), for a ring `R`, sends `a : R` to `a⁻¹` if `a` is a unit and 0 if not. The other major results of this file (notably `inverse_add`, `inverse_add_norm` and `inverse_add_norm_diff_nth_order`) cover the asymptotic properties of `inverse (x + t)` as `t → 0`. -/ noncomputable theory open_locale topological_space variables {R : Type*} [normed_ring R] [complete_space R] namespace units /-- In a complete normed ring, a perturbation of `1` by an element `t` of distance less than `1` from `1` is a unit. Here we construct its `units` structure. -/ @[simps coe] def one_sub (t : R) (h : ∥t∥ < 1) : Rˣ := { val := 1 - t, inv := ∑' n : ℕ, t ^ n, val_inv := mul_neg_geom_series t h, inv_val := geom_series_mul_neg t h } /-- In a complete normed ring, a perturbation of a unit `x` by an element `t` of distance less than `∥x⁻¹∥⁻¹` from `x` is a unit. Here we construct its `units` structure. -/ @[simps coe] def add (x : Rˣ) (t : R) (h : ∥t∥ < ∥(↑x⁻¹ : R)∥⁻¹) : Rˣ := units.copy -- to make `coe_add` true definitionally, for convenience (x * (units.one_sub (-(↑x⁻¹ * t)) begin nontriviality R using [zero_lt_one], have hpos : 0 < ∥(↑x⁻¹ : R)∥ := units.norm_pos x⁻¹, calc ∥-(↑x⁻¹ * t)∥ = ∥↑x⁻¹ * t∥ : by { rw norm_neg } ... ≤ ∥(↑x⁻¹ : R)∥ * ∥t∥ : norm_mul_le ↑x⁻¹ _ ... < ∥(↑x⁻¹ : R)∥ * ∥(↑x⁻¹ : R)∥⁻¹ : by nlinarith only [h, hpos] ... = 1 : mul_inv_cancel (ne_of_gt hpos) end)) (x + t) (by simp [mul_add]) _ rfl /-- In a complete normed ring, an element `y` of distance less than `∥x⁻¹∥⁻¹` from `x` is a unit. Here we construct its `units` structure. -/ @[simps coe] def unit_of_nearby (x : Rˣ) (y : R) (h : ∥y - x∥ < ∥(↑x⁻¹ : R)∥⁻¹) : Rˣ := units.copy (x.add (y - x : R) h) y (by simp) _ rfl /-- The group of units of a complete normed ring is an open subset of the ring. -/ protected lemma is_open : is_open {x : R | is_unit x} := begin nontriviality R, apply metric.is_open_iff.mpr, rintros x' ⟨x, rfl⟩, refine ⟨∥(↑x⁻¹ : R)∥⁻¹, _root_.inv_pos.mpr (units.norm_pos x⁻¹), _⟩, intros y hy, rw [metric.mem_ball, dist_eq_norm] at hy, exact (x.unit_of_nearby y hy).is_unit end protected lemma nhds (x : Rˣ) : {x : R | is_unit x} ∈ 𝓝 (x : R) := is_open.mem_nhds units.is_open x.is_unit end units namespace normed_ring open_locale classical big_operators open asymptotics filter metric finset ring lemma inverse_one_sub (t : R) (h : ∥t∥ < 1) : inverse (1 - t) = ↑(units.one_sub t h)⁻¹ := by rw [← inverse_unit (units.one_sub t h), units.coe_one_sub] /-- The formula `inverse (x + t) = inverse (1 + x⁻¹ * t) * x⁻¹` holds for `t` sufficiently small. -/ lemma inverse_add (x : Rˣ) : ∀ᶠ t in (𝓝 0), inverse ((x : R) + t) = inverse (1 + ↑x⁻¹ * t) * ↑x⁻¹ := begin nontriviality R, rw [eventually_iff, metric.mem_nhds_iff], have hinv : 0 < ∥(↑x⁻¹ : R)∥⁻¹, by cancel_denoms, use [∥(↑x⁻¹ : R)∥⁻¹, hinv], intros t ht, simp only [mem_ball, dist_zero_right] at ht, have ht' : ∥-↑x⁻¹ * t∥ < 1, { refine lt_of_le_of_lt (norm_mul_le _ _) _, rw norm_neg, refine lt_of_lt_of_le (mul_lt_mul_of_pos_left ht x⁻¹.norm_pos) _, cancel_denoms }, have hright := inverse_one_sub (-↑x⁻¹ * t) ht', have hleft := inverse_unit (x.add t ht), simp only [neg_mul, sub_neg_eq_add] at hright, simp only [units.coe_add] at hleft, simp [hleft, hright, units.add] end lemma inverse_one_sub_nth_order (n : ℕ) : ∀ᶠ t in (𝓝 0), inverse ((1:R) - t) = (∑ i in range n, t ^ i) + (t ^ n) * inverse (1 - t) := begin simp only [eventually_iff, metric.mem_nhds_iff], use [1, by norm_num], intros t ht, simp only [mem_ball, dist_zero_right] at ht, simp only [inverse_one_sub t ht, set.mem_set_of_eq], have h : 1 = ((range n).sum (λ i, t ^ i)) * (units.one_sub t ht) + t ^ n, { simp only [units.coe_one_sub], rw [geom_sum_mul_neg], simp }, rw [← one_mul ↑(units.one_sub t ht)⁻¹, h, add_mul], congr, { rw [mul_assoc, (units.one_sub t ht).mul_inv], simp }, { simp only [units.coe_one_sub], rw [← add_mul, geom_sum_mul_neg], simp } end /-- The formula `inverse (x + t) = (∑ i in range n, (- x⁻¹ * t) ^ i) * x⁻¹ + (- x⁻¹ * t) ^ n * inverse (x + t)` holds for `t` sufficiently small. -/ lemma inverse_add_nth_order (x : Rˣ) (n : ℕ) : ∀ᶠ t in (𝓝 0), inverse ((x : R) + t) = (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹ + (- ↑x⁻¹ * t) ^ n * inverse (x + t) := begin refine (inverse_add x).mp _, have hzero : tendsto (λ (t : R), - ↑x⁻¹ * t) (𝓝 0) (𝓝 0), { convert ((mul_left_continuous (- (↑x⁻¹ : R))).tendsto 0).comp tendsto_id, simp }, refine (hzero.eventually (inverse_one_sub_nth_order n)).mp (eventually_of_forall _), simp only [neg_mul, sub_neg_eq_add], intros t h1 h2, have h := congr_arg (λ (a : R), a * ↑x⁻¹) h1, dsimp at h, convert h, rw [add_mul, mul_assoc], simp [h2.symm] end lemma inverse_one_sub_norm : (λ t : R, inverse (1 - t)) =O[𝓝 0] (λ t, 1 : R → ℝ) := begin simp only [is_O, is_O_with, eventually_iff, metric.mem_nhds_iff], refine ⟨∥(1:R)∥ + 1, (2:ℝ)⁻¹, by norm_num, _⟩, intros t ht, simp only [ball, dist_zero_right, set.mem_set_of_eq] at ht, have ht' : ∥t∥ < 1, { have : (2:ℝ)⁻¹ < 1 := by cancel_denoms, linarith }, simp only [inverse_one_sub t ht', norm_one, mul_one, set.mem_set_of_eq], change ∥∑' n : ℕ, t ^ n∥ ≤ _, have := normed_ring.tsum_geometric_of_norm_lt_1 t ht', have : (1 - ∥t∥)⁻¹ ≤ 2, { rw ← inv_inv (2:ℝ), refine inv_le_inv_of_le (by norm_num) _, have : (2:ℝ)⁻¹ + (2:ℝ)⁻¹ = 1 := by ring, linarith }, linarith end /-- The function `λ t, inverse (x + t)` is O(1) as `t → 0`. -/ lemma inverse_add_norm (x : Rˣ) : (λ t : R, inverse (↑x + t)) =O[𝓝 0] (λ t, (1:ℝ)) := begin simp only [is_O_iff, norm_one, mul_one], cases is_O_iff.mp (@inverse_one_sub_norm R _ _) with C hC, use C * ∥((x⁻¹:Rˣ):R)∥, have hzero : tendsto (λ t, - (↑x⁻¹ : R) * t) (𝓝 0) (𝓝 0), { convert ((mul_left_continuous (-↑x⁻¹ : R)).tendsto 0).comp tendsto_id, simp }, refine (inverse_add x).mp ((hzero.eventually hC).mp (eventually_of_forall _)), intros t bound iden, rw iden, simp at bound, have hmul := norm_mul_le (inverse (1 + ↑x⁻¹ * t)) ↑x⁻¹, nlinarith [norm_nonneg (↑x⁻¹ : R)] end /-- The function `λ t, inverse (x + t) - (∑ i in range n, (- x⁻¹ * t) ^ i) * x⁻¹` is `O(t ^ n)` as `t → 0`. -/ lemma inverse_add_norm_diff_nth_order (x : Rˣ) (n : ℕ) : (λ t : R, inverse (↑x + t) - (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹) =O[𝓝 (0:R)] (λ t, ∥t∥ ^ n) := begin by_cases h : n = 0, { simpa [h] using inverse_add_norm x }, have hn : 0 < n := nat.pos_of_ne_zero h, simp [is_O_iff], cases (is_O_iff.mp (inverse_add_norm x)) with C hC, use C * ∥(1:ℝ)∥ * ∥(↑x⁻¹ : R)∥ ^ n, have h : eventually_eq (𝓝 (0:R)) (λ t, inverse (↑x + t) - (∑ i in range n, (- ↑x⁻¹ * t) ^ i) * ↑x⁻¹) (λ t, ((- ↑x⁻¹ * t) ^ n) * inverse (x + t)), { refine (inverse_add_nth_order x n).mp (eventually_of_forall _), intros t ht, convert congr_arg (λ a, a - (range n).sum (pow (-↑x⁻¹ * t)) * ↑x⁻¹) ht, simp }, refine h.mp (hC.mp (eventually_of_forall _)), intros t _ hLHS, simp only [neg_mul] at hLHS, rw hLHS, refine le_trans (norm_mul_le _ _ ) _, have h' : ∥(-(↑x⁻¹ * t)) ^ n∥ ≤ ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n, { calc ∥(-(↑x⁻¹ * t)) ^ n∥ ≤ ∥(-(↑x⁻¹ * t))∥ ^ n : norm_pow_le' _ hn ... = ∥↑x⁻¹ * t∥ ^ n : by rw norm_neg ... ≤ (∥(↑x⁻¹ : R)∥ * ∥t∥) ^ n : _ ... = ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n : mul_pow _ _ n, exact pow_le_pow_of_le_left (norm_nonneg _) (norm_mul_le ↑x⁻¹ t) n }, have h'' : 0 ≤ ∥(↑x⁻¹ : R)∥ ^ n * ∥t∥ ^ n, { refine mul_nonneg _ _; exact pow_nonneg (norm_nonneg _) n }, nlinarith [norm_nonneg (inverse (↑x + t))], end /-- The function `λ t, inverse (x + t) - x⁻¹` is `O(t)` as `t → 0`. -/ lemma inverse_add_norm_diff_first_order (x : Rˣ) : (λ t : R, inverse (↑x + t) - ↑x⁻¹) =O[𝓝 0] (λ t, ∥t∥) := by simpa using inverse_add_norm_diff_nth_order x 1 /-- The function `λ t, inverse (x + t) - x⁻¹ + x⁻¹ * t * x⁻¹` is `O(t ^ 2)` as `t → 0`. -/ lemma inverse_add_norm_diff_second_order (x : Rˣ) : (λ t : R, inverse (↑x + t) - ↑x⁻¹ + ↑x⁻¹ * t * ↑x⁻¹) =O[𝓝 0] (λ t, ∥t∥ ^ 2) := begin convert inverse_add_norm_diff_nth_order x 2, ext t, simp only [range_succ, range_one, sum_insert, mem_singleton, sum_singleton, not_false_iff, one_ne_zero, pow_zero, add_mul, pow_one, one_mul, neg_mul, sub_add_eq_sub_sub_swap, sub_neg_eq_add], end /-- The function `inverse` is continuous at each unit of `R`. -/ lemma inverse_continuous_at (x : Rˣ) : continuous_at inverse (x : R) := begin have h_is_o : (λ t : R, inverse (↑x + t) - ↑x⁻¹) =o[𝓝 0] (λ _, 1 : R → ℝ) := (inverse_add_norm_diff_first_order x).trans_is_o (is_o.norm_left $ is_o_id_const one_ne_zero), have h_lim : tendsto (λ (y:R), y - x) (𝓝 x) (𝓝 0), { refine tendsto_zero_iff_norm_tendsto_zero.mpr _, exact tendsto_iff_norm_tendsto_zero.mp tendsto_id }, rw [continuous_at, tendsto_iff_norm_tendsto_zero, inverse_unit], simpa [(∘)] using h_is_o.norm_left.tendsto_div_nhds_zero.comp h_lim end end normed_ring namespace units open mul_opposite filter normed_ring /-- In a normed ring, the coercion from `Rˣ` (equipped with the induced topology from the embedding in `R × R`) to `R` is an open map. -/ lemma is_open_map_coe : is_open_map (coe : Rˣ → R) := begin rw is_open_map_iff_nhds_le, intros x s, rw [mem_map, mem_nhds_induced], rintros ⟨t, ht, hts⟩, obtain ⟨u, hu, v, hv, huvt⟩ : ∃ (u : set R), u ∈ 𝓝 ↑x ∧ ∃ (v : set Rᵐᵒᵖ), v ∈ 𝓝 (op ↑x⁻¹) ∧ u ×ˢ v ⊆ t, { simpa [embed_product, mem_nhds_prod_iff] using ht }, have : u ∩ (op ∘ ring.inverse) ⁻¹' v ∩ (set.range (coe : Rˣ → R)) ∈ 𝓝 ↑x, { refine inter_mem (inter_mem hu _) (units.nhds x), refine (continuous_op.continuous_at.comp (inverse_continuous_at x)).preimage_mem_nhds _, simpa using hv }, refine mem_of_superset this _, rintros _ ⟨⟨huy, hvy⟩, ⟨y, rfl⟩⟩, have : embed_product R y ∈ u ×ˢ v := ⟨huy, by simpa using hvy⟩, simpa using hts (huvt this) end /-- In a normed ring, the coercion from `Rˣ` (equipped with the induced topology from the embedding in `R × R`) to `R` is an open embedding. -/ lemma open_embedding_coe : open_embedding (coe : Rˣ → R) := open_embedding_of_continuous_injective_open continuous_coe ext is_open_map_coe end units