/- Copyright (c) 2021 Sébastien Gouëzel. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Sébastien Gouëzel -/ import topology.instances.real import order.filter.archimedean /-! # Convergence of subadditive sequences A subadditive sequence `u : ℕ → ℝ` is a sequence satisfying `u (m + n) ≤ u m + u n` for all `m, n`. We define this notion as `subadditive u`, and prove in `subadditive.tendsto_lim` that, if `u n / n` is bounded below, then it converges to a limit (that we denote by `subadditive.lim` for convenience). This result is known as Fekete's lemma in the literature. -/ noncomputable theory open set filter open_locale topological_space /-- A real-valued sequence is subadditive if it satisfies the inequality `u (m + n) ≤ u m + u n` for all `m, n`. -/ def subadditive (u : ℕ → ℝ) : Prop := ∀ m n, u (m + n) ≤ u m + u n namespace subadditive variables {u : ℕ → ℝ} (h : subadditive u) include h /-- The limit of a bounded-below subadditive sequence. The fact that the sequence indeed tends to this limit is given in `subadditive.tendsto_lim` -/ @[irreducible, nolint unused_arguments] protected def lim := Inf ((λ (n : ℕ), u n / n) '' (Ici 1)) lemma lim_le_div (hbdd : bdd_below (range (λ n, u n / n))) {n : ℕ} (hn : n ≠ 0) : h.lim ≤ u n / n := begin rw subadditive.lim, apply cInf_le _ _, { rcases hbdd with ⟨c, hc⟩, exact ⟨c, λ x hx, hc (image_subset_range _ _ hx)⟩ }, { apply mem_image_of_mem, exact zero_lt_iff.2 hn } end lemma apply_mul_add_le (k n r) : u (k * n + r) ≤ k * u n + u r := begin induction k with k IH, { simp only [nat.cast_zero, zero_mul, zero_add] }, calc u ((k+1) * n + r) = u (n + (k * n + r)) : by { congr' 1, ring } ... ≤ u n + u (k * n + r) : h _ _ ... ≤ u n + (k * u n + u r) : add_le_add_left IH _ ... = (k+1 : ℕ) * u n + u r : by simp; ring end lemma eventually_div_lt_of_div_lt {L : ℝ} {n : ℕ} (hn : n ≠ 0) (hL : u n / n < L) : ∀ᶠ p in at_top, u p / p < L := begin have I : ∀ (i : ℕ), 0 < i → (i : ℝ) ≠ 0, { assume i hi, simp only [hi.ne', ne.def, nat.cast_eq_zero, not_false_iff] }, obtain ⟨w, nw, wL⟩ : ∃ w, u n / n < w ∧ w < L := exists_between hL, obtain ⟨x, hx⟩ : ∃ x, ∀ i < n, u i - i * w ≤ x, { obtain ⟨x, hx⟩ : bdd_above (↑(finset.image (λ i, u i - i * w) (finset.range n))) := finset.bdd_above _, refine ⟨x, λ i hi, _⟩, simp only [upper_bounds, mem_image, and_imp, forall_exists_index, mem_set_of_eq, forall_apply_eq_imp_iff₂, finset.mem_range, finset.mem_coe, finset.coe_image] at hx, exact hx _ hi }, have A : ∀ (p : ℕ), u p ≤ p * w + x, { assume p, let s := p / n, let r := p % n, have hp : p = s * n + r, by rw [mul_comm, nat.div_add_mod], calc u p = u (s * n + r) : by rw hp ... ≤ s * u n + u r : h.apply_mul_add_le _ _ _ ... = s * n * (u n / n) + u r : by { field_simp [I _ hn.bot_lt], ring } ... ≤ s * n * w + u r : add_le_add_right (mul_le_mul_of_nonneg_left nw.le (mul_nonneg (nat.cast_nonneg _) (nat.cast_nonneg _))) _ ... = (s * n + r) * w + (u r - r * w) : by ring ... = p * w + (u r - r * w) : by { rw hp, simp only [nat.cast_add, nat.cast_mul] } ... ≤ p * w + x : add_le_add_left (hx _ (nat.mod_lt _ hn.bot_lt)) _ }, have B : ∀ᶠ p in at_top, u p / p ≤ w + x / p, { refine eventually_at_top.2 ⟨1, λ p hp, _⟩, simp only [I p hp, ne.def, not_false_iff] with field_simps, refine div_le_div_of_le_of_nonneg _ (nat.cast_nonneg _), rw mul_comm, exact A _ }, have C : ∀ᶠ (p : ℕ) in at_top, w + x / p < L, { have : tendsto (λ (p : ℕ), w + x / p) at_top (𝓝 (w + 0)) := tendsto_const_nhds.add (tendsto_const_nhds.div_at_top tendsto_coe_nat_at_top_at_top), rw add_zero at this, exact (tendsto_order.1 this).2 _ wL }, filter_upwards [B, C] with _ hp h'p using hp.trans_lt h'p, end /-- Fekete's lemma: a subadditive sequence which is bounded below converges. -/ theorem tendsto_lim (hbdd : bdd_below (range (λ n, u n / n))) : tendsto (λ n, u n / n) at_top (𝓝 h.lim) := begin refine tendsto_order.2 ⟨λ l hl, _, λ L hL, _⟩, { refine eventually_at_top.2 ⟨1, λ n hn, hl.trans_le (h.lim_le_div hbdd ((zero_lt_one.trans_le hn).ne'))⟩ }, { obtain ⟨n, npos, hn⟩ : ∃ (n : ℕ), 0 < n ∧ u n / n < L, { rw subadditive.lim at hL, rcases exists_lt_of_cInf_lt (by simp) hL with ⟨x, hx, xL⟩, rcases (mem_image _ _ _).1 hx with ⟨n, hn, rfl⟩, exact ⟨n, zero_lt_one.trans_le hn, xL⟩ }, exact h.eventually_div_lt_of_div_lt npos.ne' hn } end end subadditive