/- Copyright (c) 2020 Kenny Lau. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Kenny Lau -/ import algebra.geom_sum import linear_algebra.smodeq import ring_theory.ideal.quotient import ring_theory.jacobson_ideal /-! # Completion of a module with respect to an ideal. In this file we define the notions of Hausdorff, precomplete, and complete for an `R`-module `M` with respect to an ideal `I`: ## Main definitions - `is_Hausdorff I M`: this says that the intersection of `I^n M` is `0`. - `is_precomplete I M`: this says that every Cauchy sequence converges. - `is_adic_complete I M`: this says that `M` is Hausdorff and precomplete. - `Hausdorffification I M`: this is the universal Hausdorff module with a map from `M`. - `completion I M`: if `I` is finitely generated, then this is the universal complete module (TODO) with a map from `M`. This map is injective iff `M` is Hausdorff and surjective iff `M` is precomplete. -/ open submodule variables {R : Type*} [comm_ring R] (I : ideal R) variables (M : Type*) [add_comm_group M] [module R M] variables {N : Type*} [add_comm_group N] [module R N] /-- A module `M` is Hausdorff with respect to an ideal `I` if `⋂ I^n M = 0`. -/ class is_Hausdorff : Prop := (haus' : ∀ x : M, (∀ n : ℕ, x ≡ 0 [SMOD (I ^ n • ⊤ : submodule R M)]) → x = 0) /-- A module `M` is precomplete with respect to an ideal `I` if every Cauchy sequence converges. -/ class is_precomplete : Prop := (prec' : ∀ f : ℕ → M, (∀ {m n}, m ≤ n → f m ≡ f n [SMOD (I ^ m • ⊤ : submodule R M)]) → ∃ L : M, ∀ n, f n ≡ L [SMOD (I ^ n • ⊤ : submodule R M)]) /-- A module `M` is `I`-adically complete if it is Hausdorff and precomplete. -/ class is_adic_complete extends is_Hausdorff I M, is_precomplete I M : Prop variables {I M} theorem is_Hausdorff.haus (h : is_Hausdorff I M) : ∀ x : M, (∀ n : ℕ, x ≡ 0 [SMOD (I ^ n • ⊤ : submodule R M)]) → x = 0 := is_Hausdorff.haus' theorem is_Hausdorff_iff : is_Hausdorff I M ↔ ∀ x : M, (∀ n : ℕ, x ≡ 0 [SMOD (I ^ n • ⊤ : submodule R M)]) → x = 0 := ⟨is_Hausdorff.haus, λ h, ⟨h⟩⟩ theorem is_precomplete.prec (h : is_precomplete I M) {f : ℕ → M} : (∀ {m n}, m ≤ n → f m ≡ f n [SMOD (I ^ m • ⊤ : submodule R M)]) → ∃ L : M, ∀ n, f n ≡ L [SMOD (I ^ n • ⊤ : submodule R M)] := is_precomplete.prec' _ theorem is_precomplete_iff : is_precomplete I M ↔ ∀ f : ℕ → M, (∀ {m n}, m ≤ n → f m ≡ f n [SMOD (I ^ m • ⊤ : submodule R M)]) → ∃ L : M, ∀ n, f n ≡ L [SMOD (I ^ n • ⊤ : submodule R M)] := ⟨λ h, h.1, λ h, ⟨h⟩⟩ variables (I M) /-- The Hausdorffification of a module with respect to an ideal. -/ @[reducible] def Hausdorffification : Type* := M ⧸ (⨅ n : ℕ, I ^ n • ⊤ : submodule R M) /-- The completion of a module with respect to an ideal. This is not necessarily Hausdorff. In fact, this is only complete if the ideal is finitely generated. -/ def adic_completion : submodule R (Π n : ℕ, (M ⧸ (I ^ n • ⊤ : submodule R M))) := { carrier := { f | ∀ {m n} (h : m ≤ n), liftq _ (mkq _) (by { rw ker_mkq, exact smul_mono (ideal.pow_le_pow h) le_rfl }) (f n) = f m }, zero_mem' := λ m n hmn, by rw [pi.zero_apply, pi.zero_apply, linear_map.map_zero], add_mem' := λ f g hf hg m n hmn, by rw [pi.add_apply, pi.add_apply, linear_map.map_add, hf hmn, hg hmn], smul_mem' := λ c f hf m n hmn, by rw [pi.smul_apply, pi.smul_apply, linear_map.map_smul, hf hmn] } namespace is_Hausdorff instance bot : is_Hausdorff (⊥ : ideal R) M := ⟨λ x hx, by simpa only [pow_one ⊥, bot_smul, smodeq.bot] using hx 1⟩ variables {M} protected theorem subsingleton (h : is_Hausdorff (⊤ : ideal R) M) : subsingleton M := ⟨λ x y, eq_of_sub_eq_zero $ h.haus (x - y) $ λ n, by { rw [ideal.top_pow, top_smul], exact smodeq.top }⟩ variables (M) @[priority 100] instance of_subsingleton [subsingleton M] : is_Hausdorff I M := ⟨λ x _, subsingleton.elim _ _⟩ variables {I M} theorem infi_pow_smul (h : is_Hausdorff I M) : (⨅ n : ℕ, I ^ n • ⊤ : submodule R M) = ⊥ := eq_bot_iff.2 $ λ x hx, (mem_bot _).2 $ h.haus x $ λ n, smodeq.zero.2 $ (mem_infi $ λ n : ℕ, I ^ n • ⊤).1 hx n end is_Hausdorff namespace Hausdorffification /-- The canonical linear map to the Hausdorffification. -/ def of : M →ₗ[R] Hausdorffification I M := mkq _ variables {I M} @[elab_as_eliminator] lemma induction_on {C : Hausdorffification I M → Prop} (x : Hausdorffification I M) (ih : ∀ x, C (of I M x)) : C x := quotient.induction_on' x ih variables (I M) instance : is_Hausdorff I (Hausdorffification I M) := ⟨λ x, quotient.induction_on' x $ λ x hx, (quotient.mk_eq_zero _).2 $ (mem_infi _).2 $ λ n, begin have := comap_map_mkq (⨅ n : ℕ, I ^ n • ⊤ : submodule R M) (I ^ n • ⊤), simp only [sup_of_le_right (infi_le (λ n, (I ^ n • ⊤ : submodule R M)) n)] at this, rw [← this, map_smul'', mem_comap, map_top, range_mkq, ← smodeq.zero], exact hx n end⟩ variables {M} [h : is_Hausdorff I N] include h /-- universal property of Hausdorffification: any linear map to a Hausdorff module extends to a unique map from the Hausdorffification. -/ def lift (f : M →ₗ[R] N) : Hausdorffification I M →ₗ[R] N := liftq _ f $ map_le_iff_le_comap.1 $ h.infi_pow_smul ▸ le_infi (λ n, le_trans (map_mono $ infi_le _ n) $ by { rw map_smul'', exact smul_mono le_rfl le_top }) theorem lift_of (f : M →ₗ[R] N) (x : M) : lift I f (of I M x) = f x := rfl theorem lift_comp_of (f : M →ₗ[R] N) : (lift I f).comp (of I M) = f := linear_map.ext $ λ _, rfl /-- Uniqueness of lift. -/ theorem lift_eq (f : M →ₗ[R] N) (g : Hausdorffification I M →ₗ[R] N) (hg : g.comp (of I M) = f) : g = lift I f := linear_map.ext $ λ x, induction_on x $ λ x, by rw [lift_of, ← hg, linear_map.comp_apply] end Hausdorffification namespace is_precomplete instance bot : is_precomplete (⊥ : ideal R) M := begin refine ⟨λ f hf, ⟨f 1, λ n, _⟩⟩, cases n, { rw [pow_zero, ideal.one_eq_top, top_smul], exact smodeq.top }, specialize hf (nat.le_add_left 1 n), rw [pow_one, bot_smul, smodeq.bot] at hf, rw hf end instance top : is_precomplete (⊤ : ideal R) M := ⟨λ f hf, ⟨0, λ n, by { rw [ideal.top_pow, top_smul], exact smodeq.top }⟩⟩ @[priority 100] instance of_subsingleton [subsingleton M] : is_precomplete I M := ⟨λ f hf, ⟨0, λ n, by rw subsingleton.elim (f n) 0⟩⟩ end is_precomplete namespace adic_completion /-- The canonical linear map to the completion. -/ def of : M →ₗ[R] adic_completion I M := { to_fun := λ x, ⟨λ n, mkq _ x, λ m n hmn, rfl⟩, map_add' := λ x y, rfl, map_smul' := λ c x, rfl } @[simp] lemma of_apply (x : M) (n : ℕ) : (of I M x).1 n = mkq _ x := rfl /-- Linearly evaluating a sequence in the completion at a given input. -/ def eval (n : ℕ) : adic_completion I M →ₗ[R] (M ⧸ (I ^ n • ⊤ : submodule R M)) := { to_fun := λ f, f.1 n, map_add' := λ f g, rfl, map_smul' := λ c f, rfl } @[simp] lemma coe_eval (n : ℕ) : (eval I M n : adic_completion I M → (M ⧸ (I ^ n • ⊤ : submodule R M))) = λ f, f.1 n := rfl lemma eval_apply (n : ℕ) (f : adic_completion I M) : eval I M n f = f.1 n := rfl lemma eval_of (n : ℕ) (x : M) : eval I M n (of I M x) = mkq _ x := rfl @[simp] lemma eval_comp_of (n : ℕ) : (eval I M n).comp (of I M) = mkq _ := rfl @[simp] lemma range_eval (n : ℕ) : (eval I M n).range = ⊤ := linear_map.range_eq_top.2 $ λ x, quotient.induction_on' x $ λ x, ⟨of I M x, rfl⟩ variables {I M} @[ext] lemma ext {x y : adic_completion I M} (h : ∀ n, eval I M n x = eval I M n y) : x = y := subtype.eq $ funext h variables (I M) instance : is_Hausdorff I (adic_completion I M) := ⟨λ x hx, ext $ λ n, smul_induction_on (smodeq.zero.1 $ hx n) (λ r hr x _, ((eval I M n).map_smul r x).symm ▸ quotient.induction_on' (eval I M n x) (λ x, smodeq.zero.2 $ smul_mem_smul hr mem_top)) (λ _ _ ih1 ih2, by rw [linear_map.map_add, ih1, ih2, linear_map.map_zero, add_zero])⟩ end adic_completion namespace is_adic_complete instance bot : is_adic_complete (⊥ : ideal R) M := {} protected theorem subsingleton (h : is_adic_complete (⊤ : ideal R) M) : subsingleton M := h.1.subsingleton @[priority 100] instance of_subsingleton [subsingleton M] : is_adic_complete I M := {} open_locale big_operators open finset lemma le_jacobson_bot [is_adic_complete I R] : I ≤ (⊥ : ideal R).jacobson := begin intros x hx, rw [← ideal.neg_mem_iff, ideal.mem_jacobson_bot], intros y, rw add_comm, let f : ℕ → R := λ n, ∑ i in range n, (x * y) ^ i, have hf : ∀ m n, m ≤ n → f m ≡ f n [SMOD I ^ m • (⊤ : submodule R R)], { intros m n h, simp only [f, algebra.id.smul_eq_mul, ideal.mul_top, smodeq.sub_mem], rw [← add_tsub_cancel_of_le h, finset.sum_range_add, ← sub_sub, sub_self, zero_sub, neg_mem_iff], apply submodule.sum_mem, intros n hn, rw [mul_pow, pow_add, mul_assoc], exact ideal.mul_mem_right _ (I ^ m) (ideal.pow_mem_pow hx m) }, obtain ⟨L, hL⟩ := is_precomplete.prec to_is_precomplete hf, { rw is_unit_iff_exists_inv, use L, rw [← sub_eq_zero, neg_mul], apply is_Hausdorff.haus (to_is_Hausdorff : is_Hausdorff I R), intros n, specialize hL n, rw [smodeq.sub_mem, algebra.id.smul_eq_mul, ideal.mul_top] at ⊢ hL, rw sub_zero, suffices : (1 - x * y) * (f n) - 1 ∈ I ^ n, { convert (ideal.sub_mem _ this (ideal.mul_mem_left _ (1 + - (x * y)) hL)) using 1, ring }, cases n, { simp only [ideal.one_eq_top, pow_zero] }, { dsimp [f], rw [← neg_sub _ (1:R), neg_mul, mul_geom_sum, neg_sub, sub_sub, add_comm, ← sub_sub, sub_self, zero_sub, neg_mem_iff, mul_pow], exact ideal.mul_mem_right _ (I ^ _) (ideal.pow_mem_pow hx _), } }, end end is_adic_complete